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genome-wide association study; hQTL: histone quantitative trait locus; LCL – 

lymphoblastoid cell line; LD: linkage disequilibrium; MHC: major histocompatibility 

complex; mQTL: DNA methylation quantitative trait locus; MS: multiple sclerosis; PP: 

posterior probability; pQTL: protein quantitative trait locus; RA: rheumatoid arthritis; SLE: 

Systemic lupus erythematosus; SNP: single nucleotide polymorphisms; sQTL: splicing 

quantitative trait locus; T1D: type I diabetes; UC: ulcerative colitis 
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ABSTRACT 

Genome-wide association studies for atopic dermatitis (AD) have identified 25 reproducible 

loci. We attempt to prioritize candidate causal genes at these loci using extensive molecular 

resources compiled into a bioinformatics pipeline. 

We identified a list of 103 molecular resources for AD aetiology, including expression, 

protein and DNA methylation QTL datasets in skin or immune-relevant tissues which were 

tested for overlap with GWAS signals. This was combined with functional annotation using 

regulatory variant prediction, and features such as promoter-enhancer interactions, expression 

studies and variant fine-mapping. For each gene at each locus, we condensed the evidence 

into a prioritization score. 

Across the investigated loci, we detected significant enrichment of genes with adaptive 

immune regulatory function and epidermal barrier formation among the top prioritized genes. 

At 8 loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, 

ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less 

familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). 

Our analysis provides support for previously implicated genes at several AD GWAS loci, as 

well as evidence for plausible additional candidates at others, which may represent potential 

targets for drug discovery. 
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INTRODUCTION 

Defined by inflamed dry, hyperplastic eczematous skin and pruritus, atopic dermatitis (AD) is 

among the world’s top 50 common diseases, with prevalence in 2010 estimated at close to 

230 million cases and increasing (Hay et al. 2014). AD is highly heritable - with estimates of 

up to 75% in twin studies (Elmose and Thomsen 2015). The largest and most recent genome-

wide association study (GWAS) of AD, undertaken by the EAGLE consortium in 2015 

identified 25 loci associated with AD in individuals of European descent (Paternoster et al. 

2015). The majority of disease-associated variants are located in non-coding regions, 

implying that they have a regulatory role rather than affecting protein function. Thus, 

integrating various biological data resources can provide complementary evidence about 

GWAS causal genes (Hormozdiari et al. 2018).  

 

Since publication of the EAGLE GWAS, there has been an explosion of new datasets from 

many cell types and new methods that offer an opportunity to refine prioritization of genes at 

the GWAS loci.  In this paper, we aim to comprehensively dissect AD GWAS loci by 

prioritizing candidate causal genes and illuminating biological mechanisms through which 

candidate genes can impact AD risk.  We integrate several established fine-mapping and gene 

prioritization methods in a unique AD-focused gene prioritization pipeline to 

comprehensively evaluate the causal genetic evidence at each locus and utilize an exhaustive 

set of 103 molecular datasets in AD-relevant tissues to best support these methods. We 

explicitly model our assumptions about the importance of different types of evidence as well 

as strength of the associations relating the features to genes and variants. Our pipeline in 

combining these methods generates a score for each gene, used to assess the magnitude of 

evidence of each tested gene at a locus of being causal. Such a score can serve as a metric 
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which allows rapid gene prioritization by molecular biologists and other interested parties, 

such as pharmaceutical companies. 

 

RESULTS 

Identification of key tissues and cell types in AD GWAS loci 

In order to determine which tissues and cell types should be part of the pipeline, we tested for 

enrichment of expression at our GWAS loci across a wide range of tissues and cell types (53 

tissues from GTEx ver.7 and 79,249,533 cell types from the Gene Atlas, Immunological 

Genomics and FANTOM CAGE, respectively) and determined that all immune cell, skin 

(including fibroblast), spleen and whole blood datasets should be included (see 

Supplementary Results). We reviewed the literature to identify 103 separate datasets from 

these tissue-types with relevant data (Figure S1, S2). 

Prioritization of candidate genes  

Gene prioritization scores ranged from 0 to 1405 (SNP scores ranged from 0.5 to 968) 

(Dataset S1). For 8 loci the top prioritized SNP was not the index SNP, and for 10 loci the 

closest gene did not score best (Table 1). In detailing the results, we focus on genes ranked in 

the top 3 and SNPs ranked in top 10 at each locus as this limit agrees with the sharp score 

decay observed in scores (Figure S3 & S4, Dataset S2). 

Excluding the complex MHC locus, the highest gene scores were seen for genes at 5 loci: 

IL18R1 (score=1384) and IL18RAP (score=1341) at the 2q12.1 locus, PPP2R3C (score=996) 

at the 14q13.2 locus, IL7R (score=965) at the 5p13.2 locus, TRAF3 (score=848) at 14q32.32 

locus and IL6R (score=743) at 1q21.3 locus (Table 1, Figure 1; Dataset S3 for all loci). 

Assuming that the true model is one of a single causal gene at each locus, prioritization can 

also be evaluated by comparing the score of the top prioritized gene at a locus with all other 
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genes at that locus. Eight loci (1q21.3-IL6R, 10q21.2-ADO, 11p13-PRR5L, 5p13.2-IL7R, 

11q24.3-ETS1, 2q37.1-INPP5D, 12q15-MDM1, 14q32.32-TRAF3; Table 1) have a single 

stand-out candidate causal gene – with the top gene contributing more than 50% of the total 

score of top 10-ranked genes. The top candidate by that metric is PRR5L (79% of top 10 

genes at 11p13 locus), with a score of 598 compared to 65 for the second-ranked gene at this 

locus. Most top-prioritized genes by the total score are also prioritized by this metric. Two 

further loci show good evidence (>75% cumulative score) shared across two candidate genes 

(IL18R1 and IL18RAP at 2q12.1 and EMSY and LRRC32 at 11q13.5, which share 77% and 

84% of the cumulative score respectively). At 2q12.1 (where IL18R1 and IL18RAP reside) 

there is evidence for two independent genetic signals, and these may affect each of the 

prioritized genes. 

For five loci, the pipeline prioritizes genes in top position (and with a score >300) that were 

not considered in the original GWAS annotation (Paternoster et al. 2015); MDM1 at 12q15 

(score=728), ADO at 10q21.2 (score=615), STMN3 at 20q13.33 (score=608), SLC22A5 at 

5q31.1 (score=461) and DEXI at 16p13.13 (score=376). Some in this list (such as SLC22A5) 

represent promising candidates. 

For each locus, as well as evaluating the overall prioritization scores of each gene, we present 

a summary figure that shows how different evidence sources have contributed to the overall 

score (Figure S5) - the loci with the most compelling evidence are displayed in Figure 2. In 

addition, the individual results from each source are also available for deeper evaluation 

(Dataset S4). Full discussion of each locus in Table 1 integrating evidence from the pipeline 

with knowledge from literature is available in Supplementary Results. 

Validation of gene prioritization  
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In the absence of “gold standard” true positive genes to which we could compare our 

prioritization of candidate genes at GWAS loci, we evaluated our results in two indirect ways. 

Firstly, we tested if our top 3 prioritized genes across all loci are enriched in any gene sets, 

using enrichr (Kuleshov et al. 2016) and compared those with categories enriched among 

previously implicated AD genes (Table S1). We found that both lists are significantly 

enriched for immune system-related genes (Figure 3), but often with stronger evidence in our 

prioritized gene sets. In particular, cytokine categories were overrepresented, e.g. GO 

cytokine-mediated signalling pathway (adjusted p-value for our prioritized genes = 1x10
-9

 

versus 0.004 for other previously implicated AD genes). The genes in the cytokine pathways 

identified by the pipeline include IL6R, IL22, INPP5D, IL2RA, IFNG, IL18R1, IL18RAP, 

IL1RL1 and IL7R. Signalling involved in regulation of response to interferon γ (GO, p=0.039 

ver. 0.043), JAK1-/JAK2-STAT3-interacting genes and JAK-STAT signalling pathway in 

general (KEGG, p=4x10
-5

 ver. 2x10
-4

), also overlapped between the two gene sets, as terms 

relating to T cell differentiation. We did not find enrichment of genes in any specific type of 

immunity – with all of Th1, Th2, Th17, Th22 represented and previously shown to play a role 

in certain subsets of AD patients, despite overall particular importance of Th2 and Th22 

(Esaki et al. 2016; Leung and Guttman-Yassky 2014; Suárez-Fariñas et al. 2013).  Genes 

concerned with establishment of the skin barrier were marginally enriched for in the pipeline 

(due to the prioritization of cornified envelope genes, HRNR and RPTN), but less than the 

previously reported AD genes (GO, p=0.045 ver. 8x10
-8

, Table S2).  

The second way we validated our results was to test if our candidates interacted with each 

other and with the genes with established roles in AD pathogenesis using STRING 

(Szklarczyk et al. 2019) to visualize the highest-confidence interactions.  The analysis 

revealed an extensive network that included 25 prioritized genes, centred on key immune 

regulators (see Supplementary Results and Figure S6).   
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DISCUSSION 

Previous annotations of AD GWAS loci have been limited in their ability to identify likely 

causal genes (Paternoster et al. 2015). Here we provide a thorough investigation of the 25 

European AD loci, by integrating all relevant available data that can be used to provide 

evidence for hypothesizing causal genes, and combine this data in such a way as to produce a 

ranking for every gene at each locus.  

As there are a vast number of methods that can be employed to attempt to establish the causal 

genes for GWAS signals, we integrate several of these, which represent the most useful and 

robust approaches that span experimentally generated functional annotations, predictions for 

regulatory impact generated by machine learning models, as well as linking back to AD 

physiology through evaluation of differential gene expression and DNA methylation studies 

and proteome comparisons involving eczema patients. 

We employed the most robust methods where possible, for example statistical methods 

(coloc, TWAS) were used to formally compare the association patterns in QTL studies and 

GWAS when full summary statistics were available, as ~50% of common variants are 

associated with one eQTL or more across 53 tissues in GTEx (Liu et al. 2019) so simple 

lookups for variant overlap alone will result in many false positives. Where full summary 

statistics were not available, we still included such look-ups, but gave such evidence much 

lower weight in the overall score (weight adjustment of 2 compared to 20 for colocalization). 

For 10 loci the top ranked gene is not the gene closest to the index GWAS SNP. Eight loci 

have a single stand-out candidate causal gene (score >50% of the top 10 gene cumulative 

score) and 7 genes score particularly high (>700) and/or have a particular stand-out score 

(>75%). Whilst in many cases our analysis strengthens the evidence for existing candidate 
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causal genes at these loci, at 6 loci our score ranks alternative candidates as the most likely 

causal gene. 

One of these 6 can be considered an interesting validation of our approach. IL15RA was 

previously considered the most plausible candidate gene at the 10p15.1 locus due to the 

limited eQTL evidence that was available at the time. Our approach however prioritized 

IL2RA over IL15RA. Since the publication of the GWAS in 2015 this locus has been followed 

up with CRISPR experiments, which reported that the T-allele at rs61839660 down-regulates 

IL2RA expression (Simeonov et al. 2017), suggesting that our prioritization at this locus is 

correct.  

At another locus - 11q13.5, experimental evidence has emerged supporting candidate role of 

the top two prioritised genes - LRRC32 (encoding the GARP receptor) and EMSY. Rare 

missense mutations found in LRRC32 in eczema patients decrease GARP expression on the 

activated T regulatory cell surface and reduce conversion of naïve T cells into T regulatory 

cells (Manz et al. 2016). On the other hand, EMSY has been characterized as a potent 

regulator of skin barrier formation (Elias et al. 2019). Another top-prioritised gene with 

recent evidence for role in skin barrier formation is KIF3A (locus 5q31.1b, Stevens et al. 

2020), further details in supplementary results. 

 

Other validations of our approach are provided by tests of enrichment of ontology terms and 

evidence of protein-protein interactions amongst the top ranked genes across all loci. 

Enrichment was found for ontology terms associated with: skin barrier integrity, T helper cell 

polarization, cytokine signalling and JAK-STAT signalling. The importance of JAK-STAT 

signalling has recently been highlighted by its enrichment among genes prioritized for 

inflammatory skin diseases (including AD) with HiChIP-derived T cell enhancer connectome 

(Jeng et al. 2019) and over-representation of rare coding variants in JAK1/2 in a new AD 
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study (Mucha et al. 2019). In investigating protein-protein interactions with the STRING 

database among our prioritized candidate genes and other established candidates, interactions 

between genes with immune regulation (but not skin barrier) functions were found amongst 

the established AD players: TSLP and its receptor, TLR2, STAT6, IL4 and interferon γ 

receptor. STRING data is not entirely comprehensive and omits other functional relationships 

between prioritized genes, described in Supplementary Results.  

In general, the results of our GWAS prioritization analysis remind us that interpretation of a 

GWAS locus is complicated due to varying regulation between cell types and widespread co-

regulation that makes identification of the true causal gene difficult. Indeed, recent GWAS 

research reveals that on top of each locus being able to contain multiple signals (Mahajan et 

al. 2018), each signal can influence multiple co-regulated genes (Cannon and Mohlke 2018). 

Associations with molecular phenotypes follow the same pattern, with at least 9% of human 

eQTLs quantified to contain secondary signals (Wood et al. 2011) and multiple genes 

implicated for 50% of human eQTLs (Gamazon et al. 2018). According to the multiple 

enhancer variant hypothesis, several variants in LD can influence multiple enhancers and 

cooperatively affect expression of target gene(s). Corradin et al. (2014) provide evidence for 

it in 6 autoimmune diseases, including RA, Crohn's disease and SLE (Corradin et al. 2014). 

Therefore, it is not surprising that many of our loci showed multiple colocalizations for 

different genes and tissues, especially in gene-dense regions, with the caveat that not all may 

be causal. A recent analysis of the TWAS colocalization method claims that around 75% of 

hits will be non-causal in the instance of correlated gene expression at the locus (Wainberg et 

al. 2019), and we hypothesize that may be the case at loci 11q13.1, 14q13.2, and 20q13.33, 

where expression of as many as 4-6 genes colocalizes with AD GWAS signal in the TWAS 

results. Still, due to a distinct possibility of detection of multiple target genes and variants at a 

locus, we do not focus only on top-rated hits in our gene and variant ranking. AD GWAS loci 
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which we believe should be further experimentally investigated in that regard, include: 

2q12.1 (IL18R1, IL18RAP, IL1R1), 5q31.1 (KIF3A, PDLIM4, SLC22A4, IRF1) and 20q13.33 

(STMN3, LIME1, ARFRP1) – the first two especially due to containing at least two 

independent signals in the GWAS analysis. 

Most of the genes with eQTL colocalization across tissues exhibit the same direction of 

effect, e.g. PRR5L (at 11p13), where the protective allele is associated with increased 

expression in the skin, whole blood and immune cell subsets. However, at three loci (2q12.1, 

14q13.2, and 20q13.33) there may be tissue-dependent effects on expression, with opposite 

directions of effect on STMN3, LIME1, APFRP1, IL18RAP and PP2R3C.  This indicates that 

causal variants potentially reside in tissue type-specific regulatory regions and context-

dependent effect of these genes could impact atopic dermatitis phenotype. 

 

Our pipeline for follow-up of GWAS signals, whilst focused on the integration of AD-

relevant resources in this use case, can be adapted for other diseases or traits, following 

identification of the most relevant molecular datasets. The best evidence would come from 

consistent and clear prioritisation of a single gene from multiple sources (e.g. variants of 

interest at a locus showing physical interaction with enhancers and promoters of the same 

genes implicated by eQTL and pQTL data and validation of such genes in differential 

expression analyses, all in consistent cell/tissue types). However, for several reasons this 

situation is uncommon.  Available datasets include evidence from limited tissues and cell 

states - reflecting transcriptional dynamics which are often transient, and low basepair 

resolution offered by high-throughput Hi-C which results in large, non-specific overlap 

regions (Mora et al. 2016). Ideally, data on specific blood and skin cell types would be 

available rather than bulk tissue, which will average out any cell-specific signals (Cano-

Gamez and Trynka 2020). Furthermore, available sources do not cover the full spectrum of 
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variants or genes/proteins and so absence of evidence cannot be equated to evidence of 

absence. Predictions will improve as evidence from across more tissue types, especially at a 

single-cell resolution become available. Such rich datasets are already being generated for 

related disorders, such as asthma (Vieira Braga et al. 2019); considering trans- and isoform-

level mechanism of action, and explicitly modelling network connectivity via protein-protein 

interactions and co-expression. It is also important to note that all the methods described in 

the pipeline are purely correlational, and so will require experimental manipulation for 

establishing causality of target genes, via e.g. CRISPR screening. 

 

Our gene prioritisation score method assigns weight to different evidence sources, effectively 

up-weighting evidence with expected lower false discovery rate (such as TWAS and coloc) – 

which are also rarer and down-weighting weaker evidence (such as single eQTL look-ups) – 

that have been shown to often be purely coincidental and are numerous, so could easily 

overwhelm the overall score. There is currently no consensus on the best way to 

quantitatively integrate such evidence. Prior efforts for single trait GWAS annotation have 

taken other approaches: assigning equal weights (Schlosser et al. 2020) - which has obvious 

down-sides or attempting automatic weight assignment (Schwartzentruber et al. 2021) - 

which essentially optimised for closest genes. A promising approach uses ‘gold standard’ 

gene assignments at select GWAS loci for training (Ghoussaini et al. 2021), however, this 

type of method requires a number of GWAS as input with evidence sources limited to those 

relevant to all traits and selection bias inherent to the choice of “gold standard genes” used 

for training. It is of note that many different approaches all up-weight colocalization 

evidence, in agreement with our pipeline. Whilst there is some arbitrariness in our weighting 

assumptions, we believe our score calculation procedure has clear assumptions and justifiably 

balances some of the trade-offs. 
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Whilst there are limitations in our approach, as outlined in the sections above, we find it 

useful as an approach to easily flag the genes where we find most evidence which can then be 

carefully evaluated and potentially characterized as future drug targets.  Loci where we are 

more confident in prioritization of single genes, especially lend themselves to direct 

experimental investigation, such as TRAF3 at the 14q32.32 locus and PRR5L at the 11p13 

locus. Additionally, investigating loci with clear candidate genes and association with 

multiple inflammatory diseases showing consistent direction of effect, such as 11p13 (PRR5L 

– MS, asthma), 11q24 (ETS1 - psoriasis, celiac disease) and 16p13.13 (DEXI and CLEC16A - 

T1D, MS, alopecia areata, SLE, asthma) may reveal promising targets with potential drug 

repurposing future. Others with opposing direction of effect may reveal potential adverse side 

effects for consideration in therapeutic development (e.g. with anti-IL6 biologics for RA). 

 

MATERIALS AND METHODS 

This is an abbreviated version. For additional technical details, see Supplementary Materials 

and Methods.  

Source GWAS 

We investigate 25 loci, which show either genome-wide significance and for novel loci are 

replicated in independent European ancestry sample (21 loci), or are significant loci 

prioritized by the gene set enrichment analysis presented in the original paper (Paternoster et 

al. 2015). 

Bayesian fine-mapping 

To identify likely causal genetic variants in the regions harbouring AD GWAS signals, we 

used three different Bayesian fine-mapping methods: Finemap (Benner et al. 2016), 

fastPaintor (Kichaev et al. 2017) and JAM (Newcombe et al. 2016). Each method relies on 
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different prior assumptions and model formulation leading to divergent results (Cannon et al. 

2017). The aim of our finemapping was not necessarily to identify the causal variants per se, 

but to prioritize SNPs which in turn provide evidence for what genes in the region are likely 

to be causal (further details in Supplementary M&M). 

Variant filtering 

In subsequent gene analyses, described below, we limited ourselves to SNPs within the 

region in significant LD with the index SNP in 1000 Genomes EUR population, henceforth 

referred to as the GWAS locus interval. The region in each case was defined by the positions 

of the furthest away 5’ and 3’ SNP with r2>=0.2 relative to the index SNP (limited to a 

maximum of 500kb in either direction). All the SNPs within that boundary were then 

considered (further details in Supplementary M&M).  

Identification of key tissues and cell types 

In order to focus on key tissues/cell types associated with eczema variants, we used gene set 

enrichment in SNPSea (Slowikowski et al. 2014) with the supplied gene expression datasets: 

Gene Atlas Affymetrix expression in 79 human tissues (Su et al. 2004), Immunological 

Genome Project (Heng et al. 2008) Affymetrix expression in 249 murine blood cell types and 

FANTOM CAGE (Kawaji et al. 2014) in 533 human cell types.  

Secondly, we used MAGMA (de Leeuw et al. 2015) gene enrichment analysis on GTEx 7.0 

(GTEx Consortium 2017) data as carried out by FUMA (Watanabe et al. 2017) (further 

details in Supplementary M&M). 

eQTL identification 

We used genotype array data and RPKM (reads per kilobase of transcript, per million 

mapped reads)-normalized expression in lymphoblastoid cell line (LCL) and skin tissue from 
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the TwinsUK cohort (Buil et al. 2015). cis-eQTLs 1.5Mbp upstream and downstream of TSS 

were identified using linear mixed model implemented in GEMMA (Zhou and Stephens 

2012). eQTL associations were identified using the Wald test.  

In the analysis involving the CEDAR cohort (Momozawa et al. 2018), we used the publicly 

available data: imputed genotypes and normalized gene expression values from blood and 

intestinal cell types (CD4
+
 T lymphocytes, CD8

+
 T lymphocytes, CD19

+ 
B lymphocytes, 

CD14
+
 monocytes, CD15

+
 granulocytes, platelets, ileum, colon, rectum). We used 

GEMMA’s linear mixed model and Wald test to re-identify cis-eQTLs within 1.5Mbp 

upstream and downstream of TSS (further details in Supplementary M&M). 

Colocalization with coloc and TWAS 

We obtained full summary statistic results for cis-eQTLs detected in whole blood in the 

eQTLGen dataset (Võsa et al. 2018) – accessed on 08/08/2018, eQTLs from GTEx ver.7 

dataset identified in the following tissues: whole blood, spleen, sun-exposed and unexposed 

skin, transformed fibroblasts and EBV-transformed lymphocytes, eQTLs published from the 

study investigating monocyte response to microbe-associated molecular patterns (Kim-

Hellmuth et al. 2017), eQTLs in the monocytes, neutrophils and CD4+ T cells from the 

BLUEPRINT project (Chen et al. 2016), and pQTLs from whole blood in the Sun et al. 

dataset (Sun et al. 2018) as well as TwinsUK and CEDAR eQTLs identified above (Dataset 

S5). Subsequently, colocalization signal between betas from GWAS and eQTLs/pQTLs for 

genes within 1.5Mbp upstream and downstream of index SNP was evaluated with the coloc 

(Giambartolomei et al. 2014) R package. In coloc analysis, we considered loci with posterior 

probability of H4 (PPH4) >0.5 as informative enough to be included (Table S3, as done 

previously (Kim-Hellmuth et al. 2019); with H4 stating the hypothesis of both traits being 

associated and sharing a single causal variant.  
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We also carried out a TWAS (Gusev et al. 2016) analysis, where reference datasets with gene 

expression and genotype data (GTEx ver.7.0, CEDAR and TwinsUK) were used to predict 

gene expression in our target GWAS. The analysis pipeline for the Summary-based 

Mendelian Randomization analysis has been described previously (Richardson et al. 2020)
 

(further details in Supplementary M&M).  

Complementary gene prioritization methods 

To further prioritize GWAS gene targets, we used two gene prioritization methods: regfm 

(Shooshtari et al. 2017) and PrixFixe (Taşan et al. 2015). PrixFixe strategy relies on 

prioritization of groups of candidate genes from multiple GWAS loci based on 'cofunction' 

networks (CFNs). Regfm’s workflow involves intersection of fine-mapped credible interval 

SNPs with consensus DHS sites and genes whose expression they control predicted based on 

ROADMAP (Roadmap Epigenomics Consortium et al. 2015) chromatin accessibility and 

gene expression data to prioritize target genes. 

Variant functional prediction 

KGGSeq (Li et al. 2016) was used to measure non-coding variant regulatory potential and 

coding variant deleteriousness using functional scores derived by combining scores from 7 

algorithms. fathmm-XF (Rogers et al. 2018), GWAS4D (Huang et al. 2018) and fitCons 

(Gulko et al. 2015) were also used independently. Overlap with ChIP-Seq defined binding 

sites of transcriptional regulators was cross-referenced in the ReMap2018 database (Chèneby 

et al. 2018). Splicing regulatory potential of variants was evaluated with SPIDEX (Xiong et 

al. 2014).  

We also looked at variant overlap within different regulatory regions: insulator (Wang et al. 

2015), promoter-enhancer interactions (9 studies), regulatory non-coding RNAs (5 studies), 

topologically associating domains (TADs, 6 studies), and CTCF binding sites (Ziebarth et al. 
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2012) using giggle (Layer et al. 2018) search engine (further details in Supplementary 

M&M).  

Independent lookups 

We have also performed gene and variant lookups among published significant results (see 

Dataset S5 for references) from 29 eQTL studies, 3 mQTL (including GoDMC results, Min et 

al. 2020), 2 pQTL studies, 2 hQTL studies, and a caQTL study where full GWAS results 

were not available, as well as differential expression (5 studies), DNA methylation (2 studies) 

and 2 proteome  comparisons between skin in AD patients and healthy controls. We also 

interrogated the GWAS Catalog (Milano et al. 2016) (accessed on 11/01/2019) for any 

variants that have been identified as genome-wide significant in previous GWAS studies on 

related inflammatory conditions (further details in Supplementary M&M).  

Generation of candidate gene and SNP rankings 

The results of analyses and lookups listed above were then integrated to provide two rankings 

of: 1) all the SNPs within each GWAS locus interval and 2) all the genes within 3Mbp 

window centred around index SNP. This was achieved by assigning a score to each piece of 

evidence and summing across these sources to generate a causal prioritization score for every 

SNP and every gene tested. These scores represent the strength of evidence for a causal role 

of the SNP or gene in AD. Detailed method of calculation of basic score per gene or variant 

in a given experiment/analysis is presented in Supplementary Materials & Methods and 

visualized in Figure S1. Briefly, each source of evidence was assigned a weight based on 

subjective strength of evidence: highest (20) for results from statistical tests using full set of 

summary statistics, such as molecular QTL colocalization methods; lowest (1) for prediction 

results from machine learning models such as variant functional prediction software and 

intermediate (2) for positional overlap with significant experimental results, such as identified 
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promoter-enhancer loops.  In calculating the final score, we also considered the magnitude of 

result significance or effect, specificity (overall number of SNPs/genes significant in a given 

experiment), independence of evidence (number of experiments conducted in the same study, 

such as measuring both expression and DNA methylation levels). The final score was 

adjusted by heterogeneity of evidence (i.e. genes or variants consistently supported by a 

range of evidence sources - alternative functional assays and statistical methods – were 

upweighted in proportion to the square root of mean number of unique study types and 

unique study IDs), as well as absolute number of studies providing supportive evidence.  
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Table 1 Genes prioritized at atopic dermatitis GWAS loci 

The closest genes to the index variant (in either direction) are marked in bold. The two values given in parentheses in top 3 ranked gene columns correspond to the gene 

prioritization score and percentage of the total score for locus top 10 genes, respectively. 

Locus GWAS Index variant Nearest genes Top ranked gene 2nd ranked gene 3rd ranked gene 

1q21.3 - a rs61813875 CRCT1/LCE3E  HRNR (464, 28%) RPTN (285, 17%) CRNN (249, 15%) 

1q21.3 - b rs12730935 IL6R IL6R (743, 62%) UBE2Q1 (93, 8%) ADAR (61, 5%) 

2p13.3 rs112111458 CD207/VAX2 CD207 (272, 45%) CLEC4F (62, 10%) VAX2 (56, 9%) 

2q12.1 rs6419573/rs3917265* IL18R1/IL18RAP IL18R1 (1384, 39%) IL18RAP (1341, 38%) IL1RL1 (224, 6%) 

2q37.1 rs1057258 INPP5D INPP5D (296, 57%) ATG16L1 (106, 20%) RN7SL32P (29, 6%) 

4q27 rs6827756/rs13152362* KIAA1109  KIAA1109 (220, 35%) BBS12 (112, 18%) TRPC3 (100, 16%) 

5p13.2 rs10214237 IL7R/CAPSL IL7R (965, 65%) SPEF2 (203, 14%) UGT3A2 (89, 6%) 

5q31.1 - a rs12188917 TH2LCRR  SLC22A5 (461, 35%) IRF1 (303, 23%) RAD50 (122, 9%) 

5q31.1 - b rs4705962* KIF3A KIF3A (249, 23%) SLC22A5 (247, 23%) PDLIM4 (142, 13%) 

6p21.32 rs4713555 STAT3 HLA-DRA (1405, 30%) HLA-DQB1 (689, 15%) HLA-DRB1 (566, 12%) 

6p21.33 rs41293864 MICB HSPA1B (173, 15%) HCG27 (165, 14%) CSNK2B (152, 13%) 

8q21.13 rs6473227 MIR5708/ZBTB10 ZBTB10 (192, 41%) TPD52 (70, 15%) PAG1 (69, 15%) 

10p15.1 rs6602364 IL2RA/IL15RA IL2RA (333, 45%) RBM17 (111, 15%) PFKFB3 (51, 7%) 

10q21.2 rs2944542 ZNF365 ADO (615, 61%) ZNF365 (101, 10%) EGR2 (90, 9%) 

11p13 rs2592555/rs12295535* PRR5L PRR5L (598, 79%) TRAF6 (65, 9%) COMMD9 (34, 5%) 

11q13.1 rs10791824 OVOL1 CTSW (336, 23%) OVOL1 (236, 16%) EFEMP2 (168, 11%) 

11q13.5 rs2212434 C11orf30/LRRC32 LRRC32 (545, 43%) EMSY (521, 41%) THAP12 (47, 4%) 

11q24.3 rs7127307 –/ETS1 ETS1 (298, 75%) FLII (35, 9%) APLP2 (18, 5%) 

12q15 rs2227483 IL22  MDM1 (728, 70%) IL22 (99, 10%) IFNG (57, 5%) 

14q13.2 rs2038255 PPP2R3C PPP2R3C (996, 31%) KIAA0391 (814, 25%) SRP54 (433, 13%) 

14q32.32 rs7146581 TRAF3 TRAF3 (848, 55%) AMN (281, 18%) CDC42BPB (186, 12%) 

16p13.13 rs2041733 CLEC16A DEXI (376, 34%) CLEC16A (364, 33%) RMI2 (108, 10%) 

17q21.2 rs12951971 STAT3 DHX58 (254, 32%) STAT3 (101, 13%) RAB5C (100, 13%) 

17q25.3 rs11657987 PGS1  PGS1 (205, 46%) DNAH17 (73, 16%) SOCS3 (52, 12%) 

19p13.2 rs2918307 ADAMTS10/ACTL9 ACTL9 (115, 41%) ADAMTS10 (57, 20%) MAP2K7 (34, 12%) 

20q13.33 rs4809219 RTEL1/TNFRSF6B STMN3 (608, 27%) LIME1 (473, 21%) ARFRP1 (257, 12%) 

                            *index SNP for secondary signal, where the pipeline did not give different gene prioritizations for the two signals, these are presented on one row.
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FIGURE LEGENDS 

Figure 1. Gene scores within the 3Mbp interval of lead SNP in the 6 highest-scoring loci. 

Top prioritised gene marked with a black square. a) locus 1q21.3 – b; b) locus 2q12.1; c) 

locus 5p13.2; d) locus 11p13; e) locus 14q13.2; f) locus 14q32.32.  

Figure 2. Score by type of evidence for top 3 ranked genes in the 6 highest-scoring loci. 

Scores for top 3 ranked genes at each locus are shown partitioned by category of evidence – 

here including the top 10 categories contributing the highest proportion of total score at the 

top 10 ranked genes for all loci. Order of loci corresponds to the order in Table 1. 

Figure 3. Network visualization of the functional terms enriched among locus top 3 

prioritized genes. The ontology categories are depicted as blue hexagons, with their size 

linearly proportional to -log10 of adjusted enrichment p-value. AD genes are depicted as pink 

rectangles, with the intensity of the colour fill proportional to gene score and thickness of the 

green border marking the gene rank at the locus, with rank 1 the thickest. 
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