14 research outputs found

    Disaggregation of SMAP Soil Moisture at 20 m Resolution: Validation and Sub-Field Scale Analysis

    Get PDF
    This paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SSM is a novel approach that needs to be validated and can be employed in a variety of applications that currently lack in a product with a similar high spatio-temporal resolution. The proposed high resolution SSM product was validated against available in situ data for two different fields, and it was also compared with two coarser DisPATCh products produced, disaggregating SMAP through the use of an LST at 1 km from Sentinel-3 and MODIS. From the correlation between in situ data and disaggregated SSM products, a general improvement was found in terms of Pearson’s correlation coefficient (R) for the proposed high resolution product with respect to the two products at 1 km. For the first field analyzed, R was equal to 0.47 when considering the 20 m product, an improvement compared to the 0.28 and 0.39 for the 1 km products. The improvement was especially noticeable during the summer season, in which it was only possible to successfully capture field-specific irrigation practices at the 20 m resolution. For the second field, R was 0.31 for the 20 m product, also an improvement compared to the 0.21 and 0.23 for the 1 km product. Additionally, the new product was able to depict SSM spatial variability at a sub-field scale and a validation analysis is also proposed at this scale. The main advantage of the proposed product is its very high spatio-temporal resolution, which opens up new opportunities to apply remotely sensed SSM data in disciplines that require fine spatial scales, such as agriculture and water management.info:eu-repo/semantics/publishedVersio

    Classification of Different Irrigation Systems at Field Scale Using Time-Series of Remote Sensing Data

    Get PDF
    Maps of irrigation systems are of critical value for a better understanding of the human impact on the water cycle, while they also present a very useful tool at the administrative level to monitor changes and optimize irrigation practices. This study proposes a novel approach for classifying different irrigation systems at field level by using remotely sensed data at subfield scale as inputs of different supervised machine learning (ML) models for time-series classification. The ML models were trained using ground-truth data from more than 300 fields collected during a field campaign in 2020 across an intensely cultivated region in Catalunya, Spain. Two hydrological variables retrieved from satellite data, actual evapotranspiration ( ETa ) and soil moisture ( SM ), showed the best results when used for classification, especially when combined together, retrieving a final accuracy of 90.1±2.7% . All the three ML models employed for the classification showed that they were able to distinguish different irrigation systems, regardless of the different crops present in each field. For all the different tests, the best performances were reached by ResNET, the only deep neural network model among the three tested. The resulting method enables the creation of maps of irrigation systems at field level and for large areas, delivering detailed information on the status and evolution of irrigation practices.info:eu-repo/semantics/publishedVersio

    Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica

    Get PDF
    Mapping the time-variable calving front location (CFL) of Antarctic ice shelves is important for estimating the freshwater budget, as an indicator of changing ocean and structural conditions or as a precursor of dynamic instability. Here, we present a novel approach for deriving regular and consistent CFLs based on CryoSat-2 swath altimetry. The CFL detection is based on the premise that the shelf edge is usually characterized by a steep ice cliff, which is clearly resolved in the surface elevation data. Our method applies edge detection and vectorization of the sharp ice edge in gridded elevation data to generate vector shapefiles of the calving front. To show the feasibility of our approach, we derived a unique data set of ice-front positions for the Filchner-Ronne Ice Shelf (FRIS) between 2011 and 2018 at a 200 m spatial resolution and biannual temporal frequency. The observed CFLs compare well with independently derived ice front positions from Sentinel-1 Synthetic Aperture Radar imagery and are used to calculate area change, advance rates, and iceberg calving rates. We measure an area increase of 810 ± 40 km2 a−1 for FRIS and calving rates of 9 ± 1 Gt a−1 and 7 ± 1 Gt a−1 for the Filchner and Ronne Ice Shelves, respectively, which is an order of magnitude smaller than their steady-state calving flux. Our findings demonstrate that the “elevation-edge” method is complementary to standard CFL detection techniques. Although at a reduced spatial resolution and less suitable for smaller glaciers in steep terrain, it enables to provide CFLs at regular intervals and to fill existing gaps in time and space. Moreover, the method simultaneously provides ice thickness, required for mass budget calculation, and has a degree of automation which removes the need for heavy manual intervention. In the future, altimetry data has the potential to deliver a systematic and continuous record of change in ice shelf calving front positions around Antarctica. This will greatly benefit the investigation of environmental forcing on ice flow and terminus dynamics by providing a valuable climate data record and improving our knowledge of the constraints for calving models and ice shelf freshwater budget

    PrISM at Operational Scale: Monitoring Irrigation District Water Use during Droughts

    Get PDF
    Efficient water management strategies are of utmost importance in drought-prone regions, given the fundamental role irrigation plays in avoiding yield losses and food shortages. Traditional methodologies for estimating irrigation amounts face limitations in terms of overall precision and operational scalability. This study proposes to estimate irrigation amounts from soil moisture (SM) data by adapting the PrISM (Precipitation Inferred from Soil Moisture) methodology. The PrISM assimilates SM into a simple Antecedent Precipitation Index (API) model using a particle filter approach, which allows the creation and estimation of irrigation events. The methodology is applied in a semi-arid region in the Ebro basin, located in the north-east of Spain (Catalonia), from 2016 to 2023. Multi-year drought, which started in 2020, particularly affected the region starting from the spring of 2023, which led to significant reductions in irrigation district water allocations in some of the areas of the region. This study demonstrates that the PrISM approach can correctly identify areas where water restrictions were adopted in 2023, and monitor the water usage with good performances and reliable results. When compared with in situ data for 8 consecutive years, PrISM showed a significant person’s correlation between 0.58 and 0.76 and a cumulative weekly root mean squared error (rmse) between 7 and 11 mm. Additionally, PrISM was applied to three irrigation districts with different levels of modernization, due to the different predominant irrigation systems: flood, sprinkler, and drip. This analysis underlined the strengths and limitations of PrISM depending on the irrigation techniques monitored. PrISM has good performances in areas irrigated by sprinkler and flood systems, while difficulties are present over drip irrigated areas, where the very localized and limited irrigation amounts could not be detected from SM observations.Giovanni Paolini received grant DIN2019-010652 from the Spanish Education Ministry (MICINN) and DI-2020-093 from the Catalan Agency of Research (AGAUR). The study was partially funded by the ACCWA project, funded by the European Commission Horizon 2020 Program for Research and Innovation (H2020), in the context of the Marie SkƂodowska-Curie Research and Innovation Staff Exchange (RISE) action under the grant agreement No. 823965, and by the PRIMA ALTOS project (No. PCI2019-103649) of the Ministry of Science, Innovation and Universities of the Spanish government. The PRIMA IDEWA project is also acknowledged.info:eu-repo/semantics/publishedVersio

    Towards Synergies Between Thermal-Disaggregated And Sentinel1Based Soil Moisture Data Sets

    No full text
    International audienceSoil moisture (SM) data can be reliably obtained at high spatial resolution through the disaggregation of passive microwave-derived SM. Optical/thermal data are classically used as fine scale information in such a disaggregation procedure. The point is that optical data are unavailable under cloudy conditions and their relationship with SM is strongly affected by vegetation cover. Alternatively, Sentinel-1 provides radar data at an unprecedented spatio- temporal resolution, despite the complex relationship between backscatter and SM that often requires ancillary data for calibration. Hence the idea of combining disaggregation- and Sentinel-1-based SM retrieval approaches on clear sky days and to run the so-calibrated radar-based algorithm irrespective of weather conditions. This study undertakes preliminary analyses before both approaches can be efficiently merged. It consists of 1) extending the applicability of DISPATCH (disaggregation) algorithm to full-vegetated areas, in order to optimize the spatial match between disaggregation- and radar-based approaches and 2) providing a first comparative assessment of DISPATCH and the recently released Copernicus 1 km resolution SM data sets over a contrasted area including dryland and irrigated crops. Results indicate significant differences between both data sets, thus highlighting the potential of synergies between them

    Disaggregation of SMAP Soil Moisture at 20 m Resolution: Validation and Sub-Field Scale Analysis

    No full text
    International audienceThis paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SSM is a novel approach that needs to be validated and can be employed in a variety of applications that currently lack in a product with a similar high spatio-temporal resolution. The proposed high resolution SSM product was validated against available in situ data for two different fields, and it was also compared with two coarser DisPATCh products produced, disaggregating SMAP through the use of an LST at 1 km from Sentinel-3 and MODIS. From the correlation between in situ data and disaggregated SSM products, a general improvement was found in terms of Pearson’s correlation coefficient (R) for the proposed high resolution product with respect to the two products at 1 km. For the first field analyzed, R was equal to 0.47 when considering the 20 m product, an improvement compared to the 0.28 and 0.39 for the 1 km products. The improvement was especially noticeable during the summer season, in which it was only possible to successfully capture field-specific irrigation practices at the 20 m resolution. For the second field, R was 0.31 for the 20 m product, also an improvement compared to the 0.21 and 0.23 for the 1 km product. Additionally, the new product was able to depict SSM spatial variability at a sub-field scale and a validation analysis is also proposed at this scale. The main advantage of the proposed product is its very high spatio-temporal resolution, which opens up new opportunities to apply remotely sensed SSM data in disciplines that require fine spatial scales, such as agriculture and water management

    Irrigation Mapping Using Sentinel-1 Time Series at Field Scale

    No full text
    The recently launched Sentinel-1 satellite with a Synthetic Aperture Radar (SAR) sensor onboard offers a powerful tool for irrigation monitoring under various weather conditions, with high spatial and temporal resolution. This research discusses the potential of different metrics calculated from the Sentinel-1 time series for mapping irrigated fields. A methodology for irrigation mapping using SAR data is proposed. The study is performed using VV (vertical–vertical) and VH (vertical–horizontal) polarizations over an agricultural site in Urgell, Catalunya (Spain). With field segmentation information from SIGPAC (the Geographic Information System for Agricultural Parcels), the backscatter intensities are averaged within each field. From the Sentinel-1 time series for each field, the statistics and metrics, including the mean value, the variance of the signal, the correlation length, and the fractal dimension, are analyzed. With the Support Vector Machine (SVM), the classification of irrigated crops, irrigated trees, and non-irrigated fields is performed with the metrics vector. The results derived from the SVM are validated with ground truthing from SIGPAC over the whole study area, with a good overall accuracy of 81.08%. Random Forest (RF) machine classification is also tested in this study, which gives an accuracy of around 82.2% when setting the tree depth at three. The methodology is based only on SAR data, which makes it applicable to all areas, even with frequent cloud cover, but this method may be less robust when irrigation is less dominated to soil moisture change

    Estimating multi-scale irrigation amounts using multi-resolution soil moisture data: A data-driven approach using PrISM

    No full text
    Irrigated agriculture is the primary driver of freshwater use and is continuously expanding. Precise knowledge of irrigation amounts is critical for optimizing water management, especially in semi-arid regions where water is a limited resource. This study proposed to adapt the PrISM (Precipitation inferred from Soil Moisture) methodology to detect and estimate irrigation events from soil moisture remotely sensed data. PrISM was originally conceived to correct precipitation products, assimilating Soil Moisture (SM) observations into an antecedent precipitation index (API) formula, using a particle filter scheme. This novel application of PrISM uses initial precipitation and SM observations to detect instances of water excess in the soil (not caused by precipitation) and estimates the amount of irrigation, along with its uncertainty. This newly proposed approach does not require extensive calibration and is adaptable to different spatial and temporal scales. The objective of this study was to analyze the performance of PrISM for irrigation amount estimation and compare it with current state-of-the-art approaches. To develop and test this methodology, a synthetic study was conducted using SM observations with various noise levels to simulate uncertainties and different spatial and temporal resolutions. The results indicated that a high temporal resolution (less than 3 days) is crucial to avoid underestimating irrigation amounts due to missing events. However, including a constraint on the frequency of irrigation events, deduced from the system of irrigation used at the field level, could overcome the limitation of low temporal resolution and significantly reduce underestimation of irrigation amounts. Subsequently, the developed methodology was applied to actual satellite SM products at different spatial scales (1 km and 100 m) over the same area. Validation was performed using in situ data at the district level of Algerri-Balaguer in Catalunya, Spain, where in situ irrigation amounts were available for various years. The validation resulted in a total Pearson’s correlation coefficient (r) of 0.80 and a total root mean square error (rmse) of 7.19 mm∕week for the years from 2017 to 2021. Additional validation was conducted at the field level in the Segarra-Garrigues irrigation district using in situ data from a field where SM profiles and irrigation amounts were continuously monitored. This validation yielded a total bi-weekly r of 0.81 and a total rmse of −9.34 mm∕14-days for the years from 2017 to 2021. Overall, the results suggested that PrISM can effectively estimate irrigation from SM remote sensing data, and the methodology has the potential to be applied on a large scale without requiring extensive calibration or site-specific knowledge

    Estimating multi-scale irrigation amounts using multi-resolution soil moisture data: A data-driven approach using PrISM

    No full text
    Irrigated agriculture is the primary driver of freshwater use and is continuously expanding. Precise knowledge of irrigation amounts is critical for optimizing water management, especially in semi-arid regions where water is a limited resource. This study proposed to adapt the PrISM (Precipitation inferred from Soil Moisture) methodology to detect and estimate irrigation events from soil moisture remotely sensed data. PrISM was originally conceived to correct precipitation products, assimilating Soil Moisture (SM) observations into an antecedent precipitation index (API) formula, using a particle filter scheme. This novel application of PrISM uses initial precipitation and SM observations to detect instances of water excess in the soil (not caused by precipitation) and estimates the amount of irrigation, along with its uncertainty. This newly proposed approach does not require extensive calibration and is adaptable to different spatial and temporal scales. The objective of this study was to analyze the performance of PrISM for irrigation amount estimation and compare it with current state-of-the-art approaches. To develop and test this methodology, a synthetic study was conducted using SM observations with various noise levels to simulate uncertainties and different spatial and temporal resolutions. The results indicated that a high temporal resolution (less than 3 days) is crucial to avoid underestimating irrigation amounts due to missing events. However, including a constraint on the frequency of irrigation events, deduced from the system of irrigation used at the field level, could overcome the limitation of low temporal resolution and significantly reduce underestimation of irrigation amounts. Subsequently, the developed methodology was applied to actual satellite SM products at different spatial scales (1 km and 100 m) over the same area. Validation was performed using in situ data at the district level of Algerri-Balaguer in Catalunya, Spain, where in situ irrigation amounts were available for various years. The validation resulted in a total Pearson’s correlation coefficient (r) of 0.80 and a total root mean square error (rmse) of 7.19 mm∕week for the years from 2017 to 2021. Additional validation was conducted at the field level in the Segarra-Garrigues irrigation district using in situ data from a field where SM profiles and irrigation amounts were continuously monitored. This validation yielded a total bi-weekly r of 0.81 and a total rmse of −9.34 mm∕14-days for the years from 2017 to 2021. Overall, the results suggested that PrISM can effectively estimate irrigation from SM remote sensing data, and the methodology has the potential to be applied on a large scale without requiring extensive calibration or site-specific knowledge
    corecore