
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 10055

Classification of Different Irrigation Systems at Field
Scale Using Time-Series of Remote Sensing Data
Giovanni Paolini , Maria Jose Escorihuela , Olivier Merlin, Magí Pamies Sans , and Joaquim Bellvert

Abstract—Maps of irrigation systems are of critical value for
a better understanding of the human impact on the water cycle,
while they also present a very useful tool at the administrative
level to monitor changes and optimize irrigation practices. This
study proposes a novel approach for classifying different irrigation
systems at field level by using remotely sensed data at subfield scale
as inputs of different supervised machine learning (ML) models
for time-series classification. The ML models were trained using
ground-truth data from more than 300 fields collected during a
field campaign in 2020 across an intensely cultivated region in
Catalunya, Spain. Two hydrological variables retrieved from satel-
lite data, actual evapotranspiration (ETa) and soil moisture (SM ),
showed the best results when used for classification, especially when
combined together, retrieving a final accuracy of90.1 ± 2.7%. All
the three ML models employed for the classification showed that
they were able to distinguish different irrigation systems, regardless
of the different crops present in each field. For all the different
tests, the best performances were reached by ResNET, the only
deep neural network model among the three tested. The resulting
method enables the creation of maps of irrigation systems at field
level and for large areas, delivering detailed information on the
status and evolution of irrigation practices.

Index Terms—Actual evapotranspiration, field scale, irrigation
systems, machine learning (ML), remote sensing, soil moisture,
time-series classification.

I. INTRODUCTION

IRRIGATION is an anthropogenic process recognized to
globally account for roughly 70% of total withdrawals [1],

[2]. On a global scale, Rosegrant and Cai [3] estimated that,
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under their baseline scenario, total consumption of water will
increase by 23% from 1995 to 2025. Monitoring total water
consumption is particularly important in semiarid areas where
freshwater resources are limited such as the Mediterranean re-
gion, where irrigation currently accounts on average for 69% [4],
[5], and it goes up to over 84% for south and east-Mediterranean
countries [6]. These percentages are projected to increase be-
tween 4% and 18% by the end of the century [7], [8], but
important uncertainty factors such as population growth and
food demand may raise this estimate to between 22% and 74%
[9].

Monitoring, understanding, and improving the efficiency of
irrigation practices is a fundamental step toward controlling
and mitigating water demands. Precise knowledge of irrigation
practices is needed to better constrain and reduce uncertainty
in hydrological models that predict future trends for water use
and account for the anthropological impact on the water cycle.
At the local scale, it is important to have an overview of irri-
gation practices at fine spatial resolution for administrative and
irrigation management purposes, such as monitoring irrigation
water usage and optimizing the efficiency of irrigation. Field
irrigation efficiency mainly depends on the irrigation system and
the level of field modernization. Generally, irrigation systems
used in semiarid areas include surface systems such as flood and
furrow and pressurized systems such as sprinkler and drip [10].
Efficiencies vary between 90% for drip, 75% for sprinkler, and
60% for flood irrigation [11]: clearly, pressurized systems are
more efficient. The low application efficiencies obtained by
surface systems are mainly due to water losses associated with
deep infiltration, soil evaporation, and flooding in some parts
of the soil because of a poor flow design at the entrance of the
furrow [12], [13].

Remote sensing is a unique and valuable tool, capable of ad-
dressing the lack of large-scale precise information over irriga-
tion practices, and overcoming the limitations of analyses based
on in situ observations, which are often prone to inconsistencies
and gaps in the information collected. Current results in the field
of remote sensing for irrigation practices featured the creation
of global or regional scale maps of irrigated areas [14], [15],
[16], [17], [18], [19], irrigation timings [20], [21], [22], and
quantification of irrigation amounts at variable resolutions [23],
[24], [25], [26], [27], [28], [29], [30]. In particular, for studies
oriented on the mapping of irrigated areas, remote sensing
data are often coupled with machine learning (ML) models,
proving to be successful with both supervised [14], [15] and
unsupervised approaches [16].
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Among ML models for classification, one of the most pop-
ular algorithms for classification is random forest [31], widely
used in the field of earth observation [32] both for land cover
mapping [33], [34], [35] and irrigation mapping [14], [15],
[18]. Recently, an adaptation of the Random Forest model for
time-series classification was proposed by Deng et al. [36] and
it is particularly useful for classification problems involving
temporal changes. This model is often the baseline to test for
new more performing ML models [37] such as Rocket [38],
which has proven to be competitive with the state-of-the-art
algorithms for classification of multivariate time-series [39], but
with a much faster computational speed. Deep learning models
have also been recently adapted to time-series classification [40].
ResNET [38] is a deep neural network model that presents a
more complex architecture than traditional models, which allows
it to adapt to complex tasks at the expense of computational
power. Fawaz et al. [40] proved how ResNET outperforms
traditional models for classification tasks in a comparison study
performed using a large variety of multidisciplinary datasets.
Moreover, in the field of irrigation mapping, Bazzi et al. [22]
confirmed how deep learning models outperform traditional ML
techniques.

The study of irrigation practices employs one or a combina-
tion of remotely sensed datasets from different sensors, from
optical/thermal to active/passive microwave, at different spatial
resolutions, but generally, two main hydrological variables are
recognized to be key for the monitoring of irrigation practices:
actual evapotranspiration (ETa) and soil moisture (SM ) [41].
ETa has been widely assessed during the last decades through
surface energy balance (SEB) models [42], [43], [44]. To be
applied at field scale, SEB models require accurate land surface
temperature (LST) data with sufficient spatial resolution. Novel
methods have been recently developed to derive ETa and po-
tential evapotranspiration (ETp) at 20 m resolution using data
from the European Commission’s Copernicus program [45].
In particular, the method employed for this study consists in
applying the two-source energy balance (TSEB) model [46]
with data from Sentinel-2 and Sentinel-3 in combination with
meteorological data forcing from the Copernicus climate data
store (CDS) [47], [48]. This approach relies on downscaling
Sentinel-3 thermal bands to Sentinel-2 spatial resolution using
a data mining sharpener (DMS) approach [49].

Similarly, SM data from remote sensing has also been ob-
tained at 20 m resolution through disaggregation techniques.
Passive L-band microwave sensors are usually preferred as low
resolution SM input since they are recognized to have the
highest sensitivity to SM and lower signal-to-noise ratio with
respect to active radar or optical sensors [50], [51], at the expense
of spatial resolution, which is in the order of tens of kilometers.
A common solution to overcome this limitation in terms of
spatial resolution is the downscaling of the SM products with
optical/thermal data, which provides land surface parameters
at higher spatial resolution than their radar counterparts [52].
Disaggregation based on physical and theoretical scale change
(DisPATCh) [53], [54] has been applied numerous times to
disaggregateSM from passive microwave sensors to higher spa-
tial resolution, through the use of optical/thermal products from

MODIS and Sentinel-3 at 1 km [54] or Landsat at 100 m [55],
[56]. A disaggregation at 20 m has been recently proposed [57]
with the use of SMAP daily low resolution SM gridded at 9 km,
Sentinel-2 normalized difference vegetation index (NDV I) at
20 m, and the enhanced Sentinel-3 LST products disaggregated
at 20 m.

As noted by Massari et al. [41] there is still an open question
on obtaining maps of irrigation systems from satellite data. So
far, studies have been limited to mapping irrigated from nonir-
rigated areas or singular irrigation systems. Numerous studies
have been performed to distinguish irrigated from rain-fed ar-
eas. At field level, Gao et al. [14] proposed to directly use a
Sentinel-1 backscatter product to train two ML models (random
forest and support vector machine) and detect differences in
the satellite signal between irrigated and nonirrigated fields,
reaching an overall classification accuracy of 81%. Similarly,
Bazzi et al. [15] trained different ML models (random forest
and a convolutional neural network) using Sentinel-1 backscatter
signal and Sentinel-2 NDVI time-series, and reaching an over-
all accuracy of 94%. Passive microwave sensors also showed
promising results in the detection of irrigation signals [58], [59]
but their coarse resolution does not allow for detection at field-
level. Dari et al. [16] produced irrigation maps at 1 km resolution
from SMOS and SMAP products disaggregated at 1 km, using
an unsupervised clustering ML model and suggesting the need
for high spatial resolution product to resolve the high spatial
variability of irrigated areas.

Regarding the detection of unique irrigation systems, different
studies have used deep learning to recognize the rounded shape
of center pivot systems [60], [61], [62]. Moreover, a deep learn-
ing approach was recently employed by Liang et al. [63] to map
contour-levee (flood) irrigation from aerial pictures. Despite
these techniques being very effective in identifying a unique irri-
gation system, a general approach for creating maps of irrigation
systems is still missing. To this date, there is no study (to the best
of our knowledge) on creating maps of irrigation systems (i.e.,
sprinkler, drip, flood) at field level. These maps can have a wide
application in the scientific community since they could replace
the simplistic assumption of irrigation scenarios used in many
land surface models (LSM), e.g., Noah [58], [64], [65], [66],
or ORCHIDEE [67] models. Additionally, maps of irrigation
systems could provide a useful tool for local policies, given that
a complete and continuous overview of irrigation systems is
lacking in many areas. These maps could give unprecedented
insights to monitor the evolution of irrigation practices and
promote and supervise the shift toward more sustainable and
efficient irrigation methods.

In this context, we propose a novel methodology to produce
maps at the field scale distinguishing between the three main
irrigation systems, drip, sprinkler and flood, and also not ir-
rigated fields. The hypothesis of this study is that differences
between irrigation systems should be detectable by analyzing
temporal patterns of actual evapotranspiration (ETa) and soil
moisture (SM ) at the field or subfield scale, through the use of
a supervised ML model. It is expected that time series of remote
sensing data reveal distinctive temporal patterns among different
irrigation systems, given the large variation in the amount and
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timing of water applied for the different systems. The proposed
methodology will be applied to a semiarid area of the Ebro basin
(Spain) that is characterized by high variability of crop types
and irrigation systems. The methodology will be then validated
against both in situ data and independent administrative data,
retrieved from statistical estimations at the district level and large
surveys among farmers.

This article is organized as follows. Section II presents the
study area, the field campaign, the administrative dataset, and
remote sensing data used. The first part of Section III presents
how time-series of remote sensing data are prepared, the addi-
tional crop classification of the ground truth dataset, the ML
methods used, the final postprocessing applied after the ML
classification and the metrics used for evaluation of the perfor-
mances. A second part of Section III then introduces the different
experiments performed in this study. Section IV presents the
results in classifying irrigation systems using different remote
sensing variables and ML methods. Finally, Section V concludes
this article.

II. MATERIALS

A. Study Area

The selected study area (41.28-42.02 N, 0.27-1.3 E) is located
in the northeast of the Iberian Peninsula, in the province of Lleida
(Spain). The climate in the region is typically Mediterranean
with an average annual precipitation and reference evapotran-
spiration (ET0) of 350 and 1100 mm, respectively. Irrigation
in the area usually starts in mid-March and lasts until the end
of November. The area is densely irrigated, with a variety of
different techniques depending on the degree of modernization
and the water allocation for the respective irrigation district:
from traditional irrigation systems based on flooding techniques
to more recent and efficient techniques that use sprinkler or drip
irrigation.

The study area is divided into eight irrigation districts, cover-
ing a total surface of around 3000 km2. An overview of the study
area is provided in Fig. 1. Irrigation practices vary depending on
the seasonal water allocation, the different crop types, and the
modernization level of each irrigation district. As an example,
the “Canals d’Urgell” district is one of the oldest districts in
the area, and irrigation is mainly performed through flooding.
Farmers have full water availability throughout the growing
season, but irrigation is performed in turns every 15–20 days.
On the other hand, Algerri–Balaguer is a modernized pressurized
irrigation district with a water allocation of 6000 m3/ha. Crops
are mainly irrigated by sprinkler or drip irrigation. The Garrigues
Sud district, located in the southern part of the study area, has
a seasonal water allocation of around 1300 m3/ha, affecting,
therefore, the type of crops grown (mostly olives and almonds)
and irrigation practices (sustained deficit irrigation). The region
has various types of cultivated crops, that can be grouped into:
winter cereals (accounting for around 34% of the total area
according to administrative databases), maize (accounting for
around 7%, but not considering the percentage of maize growing
as a second crop after winter cereals), fruit and nut trees (14%),
vineyards (1%), and olives (9%).

TABLE I
INITIAL CATALOG OF THE FIELDS COLLECTED DURING THE FIELD CAMPAIGN

IN 2020

B. Field Campaign

A field campaign was performed inside the study area during
2020, in order to collect a dataset of ground truth samples of
fields with different irrigation systems and crop types. More than
300 fields were classified using four different labels: sprinkler,
flood, drip, and nonirrigated. Fig. 1 shows how the samples were
randomly distributed across all the irrigation districts consid-
ered, in order to have a representative dataset for the area. Table I
summarizes the different irrigation systems of all the fields
collected. It is possible to notice how approximately the same
number of samples was collected for each irrigation system,
ensuring a balanced dataset. In addition, each field was initially
classified also by crop type by visual inspection and grouped in
different classes: winter cereals, maize, alfalfa, olive, vineyards,
or fruit and nut trees. Collecting these two variables provided an
overview of the relationship between irrigation systems and crop
types, which was needed to ensure the collection of a complete
dataset representative of the different typologies of fields in the
area.

C. SIGPAC-DUN Administrative Dataset

An administrative database, SIGPAC-DUN (Sistema
d’informació geográfica de parcelles agricoles), was used
in order to verify and expand the information about crop
types collected during the field campaign, and to extract
the exact shape contour of each field. SIGPAC-DUN is
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Fig. 1. Depiction of the study area (black square in the top right figure) with eight of its biggest irrigation districts. The bottom figure depicts the spatial distribution
of the fields sampled during the field campaign. The number above each circle represents the number of fields clustered by proximity, and the color goes from
green to orange to indicate the increasing quantity of clustered fields.

provided by the Catalan Ministry of Climate Action, Food,
and Rural Agenda and it contains a large variety of spatial
and alphanumeric information about agricultural practices at
parcel level, with yearly updates. Most of the information
contained in SIGPAC-DUN is directly submitted by the farmers
through an annual agrarian declaration of cultivated crops and

it gathers multiple details over the usage of the fields such as
crop type. Parcel’s shapes are also contained in SIGPAC-DUN,
created from cadastral maps and image interpretation [68]. The
dataset also contains information on presence of irrigation,
indicated as a percentage of the field subject to irrigation
(from 0 to 100), exclusively based on administrative data that
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Fig. 2. Confusion matrix representing the discrepancies between the ground
truth dataset collected during the field campaign and SIGPAC-DUN information.

indicates if irrigation is installed in the field, not its actual
usage.

Table I summarizes all the samples collected during the field
campaign divided by irrigation systems, as detected during the
campaign, and crop types, as indicated in SIGPAC-DUN.

Despite being very detailed, only the latest version of the
dataset, corresponding to the year 2021, contains information
about two important aspects of the fields: which secondary crop
type (if present) was cultivated during the year and what irriga-
tion system (if present) was installed in the field. For this reason,
when using SIGPAC-DUN it is not possible to catalog the fields
with double crops when a second crop type is present during
the year. When comparing the systems of irrigation declared
in the latest SIGPAC-DUN database against the ground-truth
dataset collected during the field campaign, a discrepancy of
around 10% was found between the two datasets (33 out of 332
collected fields for 2020, as shown in Fig. 2). This discrepancy
seems to suggest that SIGPAC-DUN reflects an outdated catalog
of irrigation systems, since most of the misclassification between
SIGPAC-DUN and the ground-truth dataset are between tradi-
tional flooding systems or not irrigated fields for SIGPAC-DUN
and modern irrigation systems for the ground-truth dataset. This
suggests that a process of modernization of the irrigation systems
is taking place in the area, but it is not registered. As a matter of
fact, Fig. 2 clearly shows that the highest discrepancy is found
for the ten fields misclassified as flood by SIGPAC-DUN, which
are in reality sprinkler systems.

D. Remote Sensing Data

Various remote sensing products were evaluated as potential
inputs for the classification task, derived from different satellite
data. ETa and SM at the subfield level (20 m) were the main
hydrological variables considered, but additional variables were
also considered in order to evaluate their feasibility in the
classification task. These inputs can be broadly grouped into

two categories, called Level 4 (L4) and Level 2 (L2) variables.
A general overview of these variables is presented in Table II.

L4 variables were estimated by the combination of multiple
satellite data into different models, in order to obtain a set of
more detailed hydrological information with a unified spatial
resolution of 20 m, while L2 variables represent data directly
retrieved from the satellites at their original processing level.
L4 variables are: actual evapotranspiration (ETa), DisPATCh
soil moisture (SM ), crop water stress coefficient (Ks), and
Sentinel-2 leaf area index (LAI). Ks was considered given the
proven strong link between this stress index and root-zone water
depletion [72], which could provide new additional information
about the field water content at a different depth level than
surface SM . LAI was instead selected to test if a variable only
related to vegetative growth could perform well in the task of
classifying irrigation systems.
ETa estimates were obtained with the Priestley–Taylor two-

source energy balance (TSEB-PT) model using Copernicus-
based inputs [42], [46], [73] and following the methodology
described by Guzinski et al. [47] which produced and vali-
dated a 20 m ETa product derived by applying TSEB-PT to
remotely sensed data. The main input data required to run the
TSEB-PT were retrieved from Sentinel-2 shortwave observa-
tions, Sentinel-3 LST , and ERA5 meteorological reanalysis
data. Sentinel-2 images were used to retrieve the biophysical
parameters of the vegetation through the Biophysical Proces-
sor [71]. These biophysical parameters were used to derive
inputs needed in the TSEB-PT such as leaf area index (LAI),
leaf optical properties, and transmittance. High-resolution
thermal data at 20 m was retrieved by applying a data mining
sharpening algorithm [49] to Sentinel-3 SLSTR LST images at
1 km, using shortwave multispectral data from Sentinel-2 [47],
[48] as a higher resolution proxy. Meteorological parameters
were retrieved from the ERA5 meteorological reanalysis, which
delivers an hourly product gridded at 0.1◦. The required me-
teorological parameters are: air and dew point temperature at
2 m, wind speed at 100 m, surface pressure, and total column
water vapor. Finally, ancillary data such as vegetation height,
and leaf inclination angle were set based on a land cover map
obtained from the Copernicus Global Land Service and a lookup
table. Instantaneous energy fluxes at the satellite overpass were
upscaled to daily water fluxes, expressed in units of mm/day,
by multiplying the instantaneous ratio of latent heat flux over
solar irradiance by the average daily solar irradiance [74].

Crop stress coefficient (Ks) was retrieved from the ratio
of ETa and potential evapotranspiration (ETpot). In order to
be consistent with the TSEB-PT, the two-layer Shuttleworth–
Wallace (SW ) model [75] was used to estimate the latter.
The theoretical base of the SW model was provided by the
Penman–Monteith energy combination equation, which has two
parts: one for the soil surface and another for the plant surface.
ETpot was computed with the SW model by setting a minimum
stomatal resistance value of 100 sm−1.

SM was created from the disaggregation of low-resolution
original data employing the DisPATCh algorithm. DisPATCh
uses a semiempirical soil evaporative efficiency model and a lin-
earized relationship between soil evaporative efficiency (SEE)
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TABLE II
OVERVIEW OF REMOTE SENSING VARIABLES USED IN THIS STUDY

and low resolution SM to perform the disaggregation [54].
Differently from the classical version of the algorithm, a mod-
ification of DisPATCh for areas under high vegetation cover
was added to the classic DisPATCh algorithm, as proposed by
Ojha et al. [76]. For this study, SM was retrieved from the
disaggregation of the original SMAP enhanced L2 SM product
(L2_SM_P_E) gridded at 9 km. The Sentinel missions pro-
vided the high resolution optical and thermal data:NDV I maps
at 20 m were extracted from the combination of bands 4 and 8 A
of the MSI instrument from Sentinel-2, while thermal maps were
retrieved from the Sentinel-3 mission and sharpened at 20 m
using Sentinel-2 reflectances bands. A digital elevation map
(DEM ) at 30 m from the Shuttle Radar Topography Mission
was also used in order to account for topographic effects during
the disaggregation process.

The considered L2 variables were: SMAP SM , Sentinel-3
LST , and Sentinel-2 NDV I . SMAP SM is the enhanced L2
passive SSM product (L2_SM_P_E) from the SMAP mission,
gridded at 9 km [77]. LST is the L2 product from the SLSTR
instrument on-board the Sentinel-3 satellite, which delivers daily
1 Km data [78]. NDV I was produced by combining band 4
(visible) and band 8 A (near-infrared) from the Level 2 product
of the Sentinel-2 satellite, with a 20 m resolution and a temporal
resolution of around five days.

III. METHODS

A. Time Series Data Preparation

Annual time-series were extracted for each pixel of each field
of the ground truth database. Three different years, 2018, 2019,
and 2020 were used to create three annual time-series per pixel.
While data on irrigation systems were only collected during the
field campaign of 2020, no changes in irrigation systems were
assumed for the two previous years: an assumption that was
confirmed for the majority of the fields by inquiry with farmers
and/or professionals working in the area. Considering multiple
years is beneficial to: 1) substantially increase the ground truth
dataset; and 2) allow the models to learn and generalize from
a larger dataset, more diverse in terms of meteorological and
crop growing conditions. This increased variability in the dataset
allows the ML models to be more robust to changes.

After the extraction of each time-series, a strategy was se-
lected in order to fill the gaps whenever the data was unavailable
for a particular day or pixel. For the case of ETa time-series,
gaps were filled following the methodology proposed by Jofre-
Čekalović et al. [79]: when not available, ETa was retrieved by
multiplying reference evapotranspiration (ET0) with the crop
coefficient (Kcs). Kcs was obtained as the ratio between ETa

and ET0 for those days with available data, while temporally
interpolated for the missing dates. For the case of the DisPATCh
SM time-series, the filling was performed using the original
SM values from SMAP SM . For the rest of the variables used
in this study, a simple linear interpolation was implemented as
a gap-filling methodology.

As an additional preprocessing step, every time-series from
each pixel and each variable are scaled through z-normalization,
a standard technique that can speed up ML model convergence
and improve performances [37], [80]. From this dataset at the
pixel level, a field level dataset was created by calculating the
median of all pixels contained in each field. The dataset at field
level was used for the experiment with simpler ML models,
while for deep neural network models the large dataset at pixel
level was needed in order to tune all the parameters and avoid
overfitting. Finally, these datasets were split into two equal parts,
50% for training and 50% for testing of the classical ML models.
keeping an equal distribution of irrigation systems and crop
types in the two groups in order to avoid imbalances towards
a particular irrigation or crop type in the training or testing
of the classification. Moreover, time-series from the same field
were used consistently for only one task, training or testing,
in an attempt to avoid undesired correlation between the two
datasets. Finally, for each ML model, ten different runs were
performed in order to extract more reliable performance metrics.
During the different runs, train and test datasets were shuffled
each time in a random fashion, but keeping the same constraints
on the distribution of crop types, irrigation systems, and using
same-field time-series for training or testing only.

B. Classification of Crop Types

Regarding specific information about crop types, using the
SIGPAC-DUN dataset only partially completed the missing



PAOLINI et al.: CLASSIFICATION OF DIFFERENT IRRIGATION SYSTEMS AT FIELD SCALE 10061

Fig. 3. LAI time-series from sentinel-2, smoothed (with hampel filter) and linearly interpolated to be used for the crop-type classification. A simple peak-detection
algorithm was employed to differentiate the crop types. The bold blue lines represent the numerical average of all the time-series inside each category.

information about the years previous to 2020. SIGPAC-DUN
does not contain information on the presence of secondary crops.
For this reason, an additional analysis was performed on the
fields with annual crops. This analysis consisted of a simple
crop classification algorithm applied to the LAI time-series to
detect the number of peaks occurring during the growing season
and check for the presence of multiple crops along the same
year. More specifically,LAI time series from Sentinel-2 at 20 m
resolution were collected for each ground truth field and for each
considered year. The median value was extracted among the
pixels inside every field, for every available date. The resulting
time series were first processed in order to remove outliers with
the Hampel filter algorithm (using a threshold value of 3 and a
window length equals to 3) and then linearly interpolated to daily
intervals. Each time-series was classified based on the number
of peaks present during the year using a simple peak detection
algorithm which distinguished among winter crops (a single
peak in the winter/spring period), summer crops (a single peak
in the summer period), double crops (double peaks), or alfalfa,
grown and harvested multiple times during the spring–summer
period (multiple peaks in the summer period). Fig. 3 shows the
LAI time-series for the different classes of annual crops that are
grouped based on the number and position of peaks. Table III

summarizes the number of fields collected in the campaign and
used in this study as a dataset to train and test the ML models.
These fields are divided per crop type and irrigation system, for
each one of the three years considered. It is possible to notice
how fields with annual crops vary in number throughout the three
years since they showed changes in crop type from one year to
another. Additionally, the total number of fields varies across
the years varies since for a small number of fields the crop type
could not be identified clearly, hence they were not considered
for the specific year.

C. ML Models

Time series classification (TSC) is a specific machine learning
class of algorithms that classifies data taking into account their
ordered structure. This class of algorithms is chosen in this
study since timing is a key element to distinguish different
systems of irrigation [41]. Three different ML models were
used, slightly adapted from the model presented in [40] and
[81]. Table IV summarizes the reason of the selection of these
particular models.

Time series forest [36] comes from the family of (decision)
tree ensemble classifiers: it is a random forest [31] adapted to
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TABLE III
SUMMARY OF THE TOTAL NUMBER OF FIELDS COLLECTED DURING THE FIELD CAMPAIGN PERFORMED IN 2020

TABLE IV
OVERVIEW OF THE MODELS USED IN THIS STUDY

detect temporal features. Random forest is a set of classification
trees, where each tree is trained on a random but independent
portion of training data, using bagging or bootstrapping to select
these training subsets [82]. Random forest algorithm are widely
used [14], [15], [18], [32], [33], [34], [35]: the reason for their
success lies in the low computational power required when
compared to similar ML techniques, its stability (by design)
against over-fitting, and its robustness against mislabelled train-
ing data. Additionally, this algorithm has a notable advantage
in terms of interpretability of its prediction: each prediction
has a confidence level that is retrieved from the percentage of

trees that voted the same class. Time-series forest is a variation
of random forest where each tree is split using a combination
of distance and entropy gain: an approach that captures well
temporal characteristics of the inputs. The model also allows for
an insightful inspection of the classification process thanks to
the possibility of producing temporal importance curves. These
curves underline the parts of the time-series that contain the
most useful information and reveal which is the most important
statistical feature among the ones extracted. Given the wide
diffusion of this ML method and its interpretability, time series
forest was chosen as the benchmark model to run the classifica-
tion experiment presented in this study.

Random convolutional kernel transform (ROCKET) is an-
other algorithm designed for time-series classification. It was
proposed by Dempster et al. [38] and proven to be compet-
itive with the state-of-the-art algorithms for classification of
multivariate time-series [39], but with a much faster compu-
tational speed. It is a kernel-approach classification inspired by
convolutional neural networks. After producing a large number
of kernels, two main features are extracted (maximum value
and portion of positive values) that are then used to train a
linear classifier (a ridge regression algorithm, as proposed in
the original paper). An innovative aspect of Ro is the existence
of a single hyper-parameter, corresponding to the number of
kernels (set to 10 000 by default), which avoids computationally
intensive hyperparameters’s tuning, a task required by many
other classifiers.
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TABLE V
ACCURACIES OF THE CLASSIFICATION OF THE TIME-SERIES FOREST APPLIED TO DIFFERENT INPUT VARIABLES, WITH ANNUAL LENGTH OR

CROPPED TO THEIR VEGETATIVE PERIODS

ResNET (Residual networks) is a deep neural network model
which was designed initially for computer vision task and
adapted to time-series classification [40], [83], given their suc-
cess in terms of performances and wide diffusion for similar
classification tasks. ResNET was shown to consistently outper-
form traditional ML models when applied to a large variety of
different datasets [40]. ResNET main architecture is used as
in Wang et al. [83]. This model was adapted in this study to
be run with multiple variables (multivariate model), through
the use of a late fusion of parallel networks [22], [84], [85],
[86], [87].

The more complex architecture of this deep learning model
requires the use of a large training dataset in order to prevent
the rapid over-fitting of the model. For this reason, pixel-level
time-series were used. Time-series contained in this dataset
could be redundant, since adjacent pixels are expected to show
similar values, given that spatial variability at 20 m resolution
is limited. Nevertheless, the small variations that they present
could still potentially improve the model accuracy, similarly to
the improvement produced by most of the data-augmentation
techniques, often used in deep learning, where slight changes
are introduced in the dataset to create new training data [40],
[88]. Training and testing datasets are still selected following
the criteria of the other ML models, keeping all time-series
from the same fields either for training or testing, thus avoiding
data-leaking effects. Final performance metrics are still evalu-
ated at field-level (after a spatial aggregation of the irrigation
systems).

D. Postprocessing

After the model’s training, annual maps of irrigation systems
were produced and two main post-processing steps are imple-
mented in order to correct for possible misclassification. Cor-
recting the classification output with a statistical or knowledge-
based approach is commonly used for multitemporal geo-spatial
classifications [89], [90], [91]. The first postprocessing steps in-
volved spatial aggregation at field-level for the irrigation systems
maps produced at pixel-level. The SIGPAC-DUN field shapes

were used as a mask and spatial aggregation was performed in
order to select only one irrigation system for each field, based
on the most recurring irrigation system predicted among all the
pixels contained in the field. This approach is also realistic since
only one system of irrigation is expected to be found for each
field. The second postprocessing step involved a temporal anal-
ysis to detect and filter unlikely single-year changes of irrigation
for a specific field. As a general rule, the presence of a single-year
anomaly in the irrigation systems was always corrected, except
for cases where the anomaly was found in the first or last year
analyzed and the change could be explained by a modernization
of the irrigation system (from not irrigated to irrigated or from
traditional irrigation as flood to more modern irrigation systems
such as drip and sprinkler). This knowledge-based temporal
correction assumes that irrigation practices are not interrupted
from one year to another and that modern irrigation systems
are never replaced by traditional irrigation, given the signifi-
cant infrastructure cost and no real production benefits of such
change.

E. Evaluation Metrics

In order to compare the results from different ML models
and variables, standard evaluation metrics are calculated by
comparing the predicted versus actual irrigation system of the
fields present in the test dataset. The accuracy is computed
as the number of correct predictions over the total number of
samples. The precision, also called user accuracy, is instead
calculated for each irrigation system category as the number
of correct predictions over the number of samples predicted
with the same category. The average precision is expressed
as the average of all the precisions calculated for all the cat-
egories. The recall, also called producer accuracy, is instead
calculated for each irrigation system category as the number
of correct predictions over the number of samples with the
same category in the ground truth. The average recall is ex-
pressed as the average of the recalls calculated for all the
categories.
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Fig. 4. Temporal importance curves from the time series forest model trained over specific crop types and corresponding input time-series of ETa and SM .
(a) Winter cereals. (b) Maize. (c) Double crops. (d) Alfalfa. (e) Trees. (f) Olive. (g) Vineyard.

F. Experimental Design

Tree different experiments were designed in order to explore
different approaches in classifying irrigation systems.

1) Influence of Crop Types: The first experiment aimed at
verifying if the model was able to correctly identify differences
exclusively related to irrigation practices, or if it was merely
classifying irrigation systems based on the crop type present
in each field. There is a proven relationship between crop
types and irrigation systems, where in most of the cases few
prevalent systems of irrigation are present for each particular
crop type, as shown in Table III. Different models of time series
forest were trained on each crop type to predict the irrigation
systems separately. Their aggregated accuracy was then com-
pared with a general Time Series Forest model trained without
discriminating by crop types in order to detect which approach
was more favourable. The experiment was performed to assess
the accuracy of SM , ETa, and both the variables together,
SM+ETa.

2) Importance of Crop Vegetative Period: A second exper-
iment was also designed using the same variables and the
time-series forest model. This second experiment was used to
check whether time-series classification models required to be
manually cropped in advance or whether the model was able
to independently select the period of more intensive irrigation.
Time-series forest was run with only a part of the time-series,
which was cropped to isolate only the vegetative period of crops,
in which there was a greater intensity of irrigation. Cropping
implied selecting the spring and summer period (from the 15th
May) for all the crops except for winter cereals, where the
winter season (until the 15th July) was used. The need for
cropping time-series was evaluated through a comparison of the

overall accuracies from the classification of irrigation systems
using cropped time-series with the accuracies retrieved using
entire time-series (e.g., ETa versus ETa,cropped, SM versus
SMcropped, etc.). Another approach used to evaluate the need
for cropping time-series was to visualize temporal importance
curves in order to verify if the time series forest model trained
with the complete time-series was able or not to independently
select the most important part of the year for the classification
of irrigation systems. These curves do not only show the most
important period of the year for the classification task, but they
also provide information on which of the extracted features
is most useful (among the ones selected in this study: mean,
standard deviation, and slope).

3) Model and Variable Selection: After verifying the capa-
bility of the model to classify irrigation systems, a final ex-
periment was designed to investigate which variables are most
suited for the classification of irrigation systems and which
model performs better for this classification task. The classi-
fication of irrigation systems was performed with both L2 and
L4 variables, training the different models with each variable
separately and with a combination of them. All the different ML
models proposed in this study were used for the comparison: the
two classic ML learning models (time-series forest and rocket)
applied to both L4 and L2 variables and trained at field level (one
time-series per field), and ResNET, the DNN model, applied
only to L4 variables at pixel level, since the low spatial resolution
of the L2 variables did not provide a large enough dataset for
training and testing of this model. Each model and each variable
were trained and evaluated ten times, changing each time the
train and test datasets’ distributions and the models’ random
initial weights. Median and standard deviation of the overall
accuracies were used as a comparison metric.
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Fig. 5. Accuracies of different approaches for the classification of irrigation systems (median and standard deviation of ten different runs). Multiple ML models and
input variables are employed. Input variables are grouped as (a) Level 2 variables, representing the initial satellite products, and (b) Level 4 variables, representing
variables produced from an elaboration of satellite data with different models.

IV. RESULTS AND DISCUSSION

A. Influence of Crop Types

Table V summarizes the accuracy retrieved from the simu-
lations. The experiment was performed to assess the accuracy
of SM , ETa, and both variables together, SM+ETa. Results
from these initial experiments show that a general model (last
column of Table V) has comparable accuracy with respect to
the aggregated accuracy (second to the last column) of multiple
models trained separately for each crop type (with a small
difference of Δ = 2.16%). Using a general model, trained on
every crop type has a noticeable advantage of not requiring a
crop type map, which makes the approach more versatile since
it can be adapted to areas where crop types are not known or
where there are different crop types from the ones analyzed in
this study.

B. Importance of Crop Vegetative Period

Table V also shows two additional results: first, it is possible
to notice how combining ETa+SM leads to consistently higher
classification accuracies than when using these two variables
separately. All crop types show better accuracy when both vari-
ables are used for classification. The only exception to these re-
sults seems to be the classification of irrigation types for alfalfa,
where accuracies remains low even when using ETa + SM ,
when comparing the two different irrigation systems present,
flood and sprinkler. A possible explanation could be the multiple
rapid vegetative growth cycles that characterize this crop. The
rapidity may result in very similar irrigation practices between
flood and sprinkler, since a shorter period of time available for
irrigation reduces the variability of the two irrigation systems
both in terms of water amount and intervals of time between
consecutive irrigations.

Fig. 6. Confusion matrix at field level (grouped with majority voting of the
pixels contained in the field) and postprocessed. The matrix shows the results of
one run of the ResNET model using ETa and SM as inputs. Each cell shows
a percentage over the total true label and number of fields. Precision and recall
are also shown on the side.

A second result is that cropping does not lead to improve-
ments in terms of accuracy. Removing parts of the time-series
actually degrades the final results, confirming that ML models
for time-series are able to independently select and exploit the
most valuable part for the time-series with no need for this
preprocessing step. As an additional proof of the capability of the
ML model to independently select the most interesting part of
the time-series, temporal importance curves from the time series
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forest were calculated. Fig. 4 shows the importance curves for
the irrigation classification task for the different crop types and
the corresponding variables (ETa and SM ) used to generate
them.

Temporal importance curves show that the model only focuses
on a specific part of the year that corresponds to the irrigation and
growing periods for each crop. It is noticeable that the feature
importance curves for ETa and SM do not always select the
same period and the same feature, suggesting that both vari-
ables provide complementary information for this classification
task.

Among the three feature importance curves for the ETa

time-series, the “mean” curve has a higher value for most of
the crop types. This is also visually evident when looking at
the time-series ETa under different irrigation systems: ETa

shows a clearer difference in magnitude for fields irrigated with
different irrigation systems, which has a direct relationship with
the amount of water supplied to the field. Flood-irrigated fields
tend to have the highest values of ETa, especially during the
warmest period, when water is almost exclusively supplied by
irrigation. This behavior was expected since flood irrigation is a
traditional system that notably employs the largest quantities of
water. Flood-irrigated fields show higher ETa for all the annual
crops, from Fig. 4(a) to (d), especially for winter cereals, where
flood-irrigated fields are compared to nonirrigated fields. For
fields cultivated with double crops, alfalfa, and maize, flood is
compared with sprinkler-irrigated fields and it is notable how
flood-irrigated fields are still evapotranspirating more, even if
the difference between these two systems is less evident. The
second row corresponds to orchards, from Fig. 4(e) to (g): it is
noticeable that when comparing nonirrigated and drip-irrigated
fields (for the case of olive and vineyard fields), the model is still
selecting the “mean” as the most important among the feature
importance curves since drip-irrigated fields shows higher values
than nonirrigated fields. Only in the case of fruit and nut-bearing
trees “slope” is most important. The “slope” curve produced
from the ETa time-series is calculated as the first derivative of
the time-series, and can be interpreted as the degree of change
of the time-series during the season: Fig. 4(e) shows a clear
different timing in irrigating with drip and flood, so there is a
clear difference in temporal changes of ETa, while nonirrigated
fields have almost constant values during the summer season,
thus, not showing temporal changes.

Regarding SM time-series, it is most evident how fields
irrigated differently have a different range of variation of SM ,
especially during the warmest periods. For this reason, the
“std” feature importance curve is selected by the model as
the most informative: For winter cereals, it is evident that the
“std” curve detects differences between the different irrigation
systems during the crop growing period. Similarly, the “std”
feature importance curve is also showing the highest peaks
during the summer period for the case of alfalfa, double crops,
vineyard, and olive fields. The only exception is present for the
importance curves created from the SM time-series of the fruit
and nut-bearing trees. In this case, the “slope” curve presents
the highest peak, which is during the month of May/June: this
is also visible in the SM curves, where during May the fields

TABLE VI
CLASSIFICATION METRICS FOR THE THREE MODELS WHEN USED WITH ETa

AND SM

irrigated by a drip system show marked differences with respect
to flood-irrigated and nonirrigated fields.

C. Model and Variable Selection

After verifying the capability of the model to classify irri-
gation systems, we proceeded to investigate which variables
are most suited for the classification of irrigation systems and
which model performs better for this classification task. Fig. 5
summarizes the accuracies retrieved for the three different mod-
els trained using different sets of the input variables described.
All models have higher accuracy when using L4 variables,
with the highest accuracy in terms of average being reached
when all the L4 variables are used together, followed by the
combination of ETa and SM only. Despite performing best,
the accuracy reached combining all the L4 variables is very
close to the accuracy reached using ETa and SM together, but
it shows a larger standard deviation, caused by the addition of
Ks and LAI which probably do not positively contribute to
the classification. For this reason, we considered ETa and SM
to be the best combination of variables. These two variables
show good accuracy even when used separately, so it could be
possible to use these single variables in the classification process,
only losing a small amount of accuracy. Nevertheless, ETa and
SM together reach higher accuracies because their information
complement each other: while SM is capable of distinguishing
better large wet surfaces caused by flood irrigation, ETa can
detect higher plant evaporation from drip with respect to non-
irrigated fields. Combining the two variables always brings a
general improvement of the prediction, as also demonstrated in
Table VII.

Regarding the different models used, the ResNET model con-
sistently shows higher results. ResNET did not only out-perform
the other models in terms of accuracy, but it showed consistently
higher results for all the different metrics used to compare
the different models, as presented in Table VI for experiments
performed with ETa and SM as input variables.

The final overall accuracy of ResNET in classifying different
irrigation systems is comparable (and in some cases higher) to
accuracies presented in literature for studies involving irriga-
tion mapping at field level, such as Gao et al. [14] and Bazzi
et al. [15]. This result shows that with the presented approach
it is possible to keep a high overall accuracy even when adding
complexity to the problem of irrigation classification. The only
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TABLE VII
PERCENTAGES OF THE AREA UNDER DIFFERENT SYSTEMS OF IRRIGATION,

DIVIDED PER IRRIGATION DISTRICT

drawback of ResNET is that it requires a significantly higher
computational cost for the model training than the other two
traditional models. In case computational cost is an issue, a good
tradeoff between accuracy and computational time is offered by
the rocket model, which is less accurate than ResNET for this
specific classification task but it is around one order of magnitude
faster in training and suggested to be used as a default model
for multivariate classification tasks given its remarkable results
for large scale studies [39]. Another advantage for rocket is that
its training time is linearly scalable with the size of the training
set [38], which could be of great value in case this classification
approach is applied to large irrigated areas, where the number
of training samples inevitably grows.

Finally, Fig. 6 shows the confusion matrix for ResNET with
ETa and SM as inputs. The matrix is calculated on the final re-
sults, after the postprocessing step, which included aggregating
the model prediction at the field level and performing temporal
postprocessing for the three different years. Precision and recall
values are also presented and indicate how all the values of the
metrics are very close to each other: an additional indicator of the
robustness of the classification, which is not imbalanced towards
any particular irrigation system. The lowest metric is represented
by the precision for the drip irrigation system, which appears to
be the label that is most misclassified by the ML model: as a
matter of fact, in a few cases, the model appears to classify drip
irrigation as flood or nonirrigated. Drip irrigation is sometimes
confused with nonirrigated fields due to the low soil wet surface
around the emitter, which minimizes losses through evaporation
and runoff. Additionally, there is also a more marked misclas-
sification in those irrigation districts with limited water allo-
cation, where sustained deficit irrigation strategies are usually
adopted, such as some areas of Segarra-Garrigues or Garrigues
Sud. We have also realized that some recently planted fields
of grapevines, almonds, and pistachios trees were classified
as nonirrigated, but instead were drip-irrigated. This probably
occurred due to its still low canopy vigor, evapotranspiration,

and soil moisture values throughout the growing season. On the
other hand, the confusion between drip and flood irrigation could
be explained either due to a decrease in SM and ETa on dates
between irrigation events or due to a higher ETa caused by crop
cover between rows. In both cases, time-series between flood
and drip-irrigated fields may look similar. In order to improve
classification for these particular cases, the selection of more
fields with these characteristics in further studies will help to
obtain a more robust classification.

D. Comparison With SIGPAC-DUN

In order to perform a more comprehensive analysis of the qual-
ity of the classification of irrigation systems derived based on
ETa and SM , a comparison of the percentage of different sys-
tems of irrigation at the irrigation district level was performed.
As previously mentioned, the latest SIGPAC-DUN dataset [68]
includes the first map of irrigation systems at the field level,
allowing for a direct comparison between the irrigation maps
produced by the ResNET model and this administrative classifi-
cation. Fig. 7 visually compares the distribution of irrigation
systems as classified by SIGPAC-DUN and by the ResNET
model for the selected study area. The borders of the different
irrigation districts are also shown as black continuous lines and
three specific areas are selected for a visual comparison. It is pos-
sible to notice how generally the ResNET model produces a map
with more modern irrigation systems than SIGPAC, where more
fields are nonirrigated or flood-irrigated. Only in the last of the
three comparisons of Fig. 7(c) (bottom-left) there is a large area
(in the Segarra-Garrigues district) depicted as flood-irrigated
by SIGPAC-DUN but predicted as nonirrigated by ResNET
(verified to be correct by visual inspection). Fig. 8 shows a
direct comparison between the different systems of irrigation
as estimated by SIGPAC-DUN and predicted by the ResNET
model used for this study. It is noticeable how the ResNET model
consistently predicts a lower percentage of traditional irrigation
by flooding, and in almost all cases (but for Canals d’Urgell and
Algerri-Balaguer) a decrease in the percentage of nonirrigated
fields. This discrepancy was expected, since SIGPAC-DUN
showed some inaccuracies already from the comparison with
the ground truth dataset. In particular, SIGPAC-DUN showed a
tendency to misclassify modern irrigated fields as not irrigated
or irrigated with the traditional system of flood. This suggested
that the database probably reflects a picture that is not up-to-date,
and it is also visible in this general comparison of the entire
study area with the map produced by the ResNET model. A
secondary cause for the discrepancy is also the limitation in
the classification of the ResNET model, which reaches a final
accuracy of around 90% when compared to the ground truth
database.

Additionally, the maps of irrigation systems from SIGPAC-
DUN and ResNET were compared with approximate values
retrieved from literature for the three largest irrigation districts:
Table VII shows the values extracted for this comparison. The
literature data were collected in 1999 for Canal de Pinyana
and Canals d’Urgell [92] and for 2018 for Canal d’Aragó i
Catalunya [23] and they are presented here as the percentage of
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Fig. 7. Irrigation systems maps (a) as delivered by SIGPAC-DUN [68] and (b) as created by the ResNET model with ETa and SM time-series for 2020, with 3
zoomed-in areas (c) for a visual comparison, showing an increasing zoom level to verify spatial consistency of the product in different irrigation districts.

Fig. 8. Comparison of systems of irrigation estimated by SIGPAC-DUN (S) and predicted by ResNET (R) for the eight irrigation districts considered for this
study.

irrigation systems over cultivated area. This comparison among
sources belonging to different years allows to establish again
the general trend for the study area in modernizing irrigation
systems. It is possible to notice how old estimates from literature
present larger percentages of traditional irrigation systems when
compared against SIGPAC-DUN, which in turn contains larger
traditional irrigation percentages than ResNET from 2020, con-
sidered the most updated source. As a matter of fact, even

though the map for SIGPAC-DUN is delivered for 2021, the
information contained over irrigation systems are a collection
of administrative surveys from various previous years.

V. CONCLUSION

A key missing information for irrigation management and
for hydrological studies over irrigated regions is the precise
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knowledge, at field level, of the different irrigation systems
installed in each field, and the trends and changes of these
systems over different years. This study has provided for the
first time a method to classify irrigation systems (flood, sprinkler,
drip) and not irrigated fields, using remotely sensed time-series
at subfield scale resolution. Key hydrological variables were
used as inputs for the classification of irrigation systems through
the use of different ML models.

Two main hydrological variables,ETa and SM at 20 m led to
the best performance in the classification of irrigation systems
when combined together, regardless of the ML model used for
the classification. This result is indicative of the usefulness of
these datasets in providing complementary information: SM
directly detects large surface soil wetting, thus easily detecting
large uses of water, as in flood and sprinkler irrigation. ETa is
instead able to detect fields that are irrigated with drips, which
does not create dramatic changes in the soil water content but
keeps the plant at high ETa levels (close to potential evapotran-
spiration) with respect to nonirrigated fields.

An initial experiment was run in order to verify if the dif-
ference in crop types was interfering with the prediction of
irrigation systems. Results showed that crop type does not inter-
fere with the task of classifying irrigation systems, and similar
performances are reached when using a general model for all
the crops or multiple models specialized by crop types. These
proved the feasibility of classifying systems of irrigation using
only hydrological variables from remote sensing.

Among the three ML models tested, ResNET showed the best
performance for all the metrics used for this classification task.
ResNET is the only deep neural network model proposed for
this study, and its architecture was shown to be more suitable for
detecting more complex variations from the analyzed data. This
characteristic is an advantage since irrigation practices strongly
vary, both in timing and amount among different fields, even for
fields that grow similar crops and employ the same irrigation
system.

Finally, we compared a map of irrigation systems derived from
the ResNET model using ETa and SM of the year 2020 against
the irrigation systems map provided by the SIGPAC-DUN ad-
ministrative catalog. Results at the district level showed a general
agreement in the percentages of irrigation systems, even though
the ResNET map appears to classify more fields with more
efficient irrigation systems (drip and sprinkler irrigation). These
differences are present since the ResNET map delivers a more
updated depiction of irrigation systems compared to the map
from SIGPAC-DUN, and captures the ongoing conversion from
flood to more efficient irrigation systems.

This work represents the first study dedicated to the automatic
detection at the field level of irrigation systems from satellite
remotely sensed data. It shows how this is achievable with
good accuracy when applied to semiarid areas. Over semi-
arid areas, the low cloud cover allows for high availability
of thermal and optical satellite data, and irrigated and non-
irrigated areas are easily distinguishable due to the marked
difference in soil water availability from the surrounding dryland
areas.

This study only focused on semiarid regions since they are
areas where water availability is a topic of increasing concern,
and where optimization in the use and distribution of water for
agriculture can bring the most noticeable improvements. One
research avenue could be to apply the proposed methodology
to more temperate areas. This application is expected to be
challenging for two main reasons: first, in those areas crop
phenology is more similar between irrigated and nonirrigated
crops [93], second, there will be larger gaps in the time-series
due to more frequent cloud cover, that will reduce the amount
of information usable by the model.

Other Mediterranean regions are expected to be well suited for
applying this methodology, where transfer learning techniques
could be explored. This approach will require a small amount
of local training data, which will only be used to tailor the
weights of the last layer of the pretrained ResNET model in
order to improve accuracies for the specific region of interest.
Unsupervised learning could also be explored as a solution that
avoids ground truth data collections, but which is often less
performing than supervised methods.
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[32] M. Belgiu and L. Drăgu, “Random forest in remote sensing: A review
of applications and future directions,” ISPRS J. Photogrammetry Remote
Sens., vol. 114, pp. 24–31, 2016.

[33] M. Pal, “Random forest classifier for remote sensing classification,”
Int. J. Remote Sens., vol. 26, pp. 217–222, 2007, doi: 10.1080/
01431160412331269698. [Online]. Available: https://www.tandfonline.
com

[34] V. F. Rodriguez-Galiano, M. Chica-Olmo, F. Abarca-Hernandez, P. M.
Atkinson, and C. Jeganathan, “Random Forest classification of Mediter-
ranean land cover using multi-seasonal imagery and multi-seasonal tex-
ture,” Remote Sens. Environ., vol. 121, pp. 93–107, 2012.

[35] P. T. Noi and M. Kappas, “Comparison of random forest, k-nearest
neighbor, and support vector machine classifiers for land cover clas-
sification using Sentinel-2 imagery,” Sensors, vol. 18, no. 1, 2017,
Art. no. 18.

[36] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest
for classification and feature extraction,” Inf. Sci., vol. 239, pp. 142–153,
2013.

[37] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: A review and experimental evaluation
of recent algorithmic advances,” Data Mining Knowl. Discov., vol. 31,
pp. 606–660, 2017. [Online]. Available: https://link.springer.com/article/
10.1007/s10618-016-0483-9

[38] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally fast
and accurate time series classification using random convolutional ker-
nels,” Data Mining Knowl. Discov., vol. 34, pp. 1454–1495, 2020. [On-
line]. Available: https://link.springer.com/article/10.1007/s10618-020-
00701-z

[39] A. P. Ruiz, M. Flynn, and A. Bagnall, “Benchmarking multivariate
time series classification algorithms,” Data Mining Knowl. Discov.,
vol. 35, pp. 401–449, 2020. [Online]. Available: http://arxiv.org/abs/2007.
13156

[40] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller,
“Deep learning for time series classification: A review,” Data Mining
Knowl. Discov., vol. 33, pp. 917–963, 2019. [Online]. Available: https:
//link.springer.com/article/10.1007/s10618-019-00619-1

[41] C. Massari et al., “A review of irrigation information retrievals from space
and their utility for users,” Remote Sens., vol. 13, 2021, Art. no. 4112.
[Online]. Available: https://www.mdpi.com/2072-4292/13/20/4112

[42] J. M. Norman, W. P. Kustas, and K. S. Humes, “Source approach for
estimating soil and vegetation energy fluxes in observations of directional
radiometric surface temperature,” Agricultural Forest Meteorol., vol. 77,
no. 3/4, pp. 263–293, 1995.

[43] W. G. Bastiaanssen et al., “A remote sensing surface energy balance
algorithm for land (SEBAL): Part 2: Validation,” J. Hydrol., vol. 212,
pp. 213–229, 1998.

[44] R. G. Allen, M. Tasumi, and R. Trezza, “Satellite-based energy balance
for mapping evapotranspiration with internalized calibration (METRIC)–
Model,” J. Irrigation Drainage Eng., vol. 133, no. 4, pp. 380–394,
2007.

[45] R. Guzinski and H. Nieto, “Evaluating the feasibility of using Sentinel-2
and Sentinel-3 satellites for high-resolution evapotranspiration estima-
tions,” Remote Sens. Environ., vol. 221, pp. 157–172, 2019.

[46] W. P. Kustas and J. M. Norman, “A two-source energy balance
approach using directional radiometric temperature observations for
sparse canopy covered surfaces,” Agronomy J., vol. 92, pp. 847–854,
2000. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.
2134/agronj2000.925847x

[47] R. Guzinski, H. Nieto, I. Sandholt, and G. Karamitilios, “Modelling high-
resolution actual evapotranspiration through Sentinel-2 and Sentinel-3 data
fusion,” Remote Sens., vol. 12, 2020, Art. no. 1433. [Online]. Available:
https://www.mdpi.com/2072-4292/12/9/1433
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