250 research outputs found

    Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0).

    Get PDF
    To make faster and efficient the identification of mRNA targets common to more than one miRNA, and to identify new miRNAs modulated in specific pathways, a computer program identified as SID1.0 (simple String IDentifier) was developed and successfully applied in the identification of deregulated miRNAs in prostate cancer cells. This computationally inexpensive Fortran program is based on the strategy of exhaustive search and specifically designed to screen shared data (target genes, miRNAs and pathways) available from PicTar and DIANA-MicroT 3.0 databases. As far as we know this is the first software designed to filter data retrieved from available miRNA databases. SID1.0 takes advantage of the standard Fortran intrinsic functions for manipulating text strings and requires ASCII input files. In order to demonstrate SID1.0 applicability, some miRNAs expected from the literature to associate with cancerogenesis (miR-125b, miR-148a and miR-141), were randomly identified as main entries for SID1.0 to explore matching sequences of mRNA targets and also to explore KEGG pathways for the presence of ID codes of targeted genes. Besides genes and pathways already described in the literature, SID1.0 has proven to useful for predicting other genes involved in prostate carcinoma. These latter were used to identify new deregulated miRNAs: miR-141, miR-148a, miR-19a and miR-19b. Prediction data were preliminary confirmed by expression analysis of the identified miRNAs in androgen-dependent (LNCaP) and independent (PC3) prostate carcinoma cell lines and in normal prostatic epithelial cells (PrEC)

    Design, characterization and in vitro evaluation of antifungal polymeric films

    Get PDF
    The objective of the present paper was the development and the full characterization of antifungal films. Econazole nitrate (ECN) was loaded in a polymeric matrix formed by chitosan (CH) and carbopol 971NF (CB). Polyethylene glycol 400 and sorbitol were used as plasticizing agents. The mechanical properties of films were poorer when the drug was loaded, probably because crystals of ENC produces network outages and therefore reduces the polymeric interactions between the polymers. Polymers–ECN and CH–CB interactions were analyzed by Fourier-transform infrared spectroscopy (FTIR), thermal gravimetry analysis, and differential thermal analysis (DTA-TGA). ECN did not show structure alterations when loaded into the films. In scanning electron microphotographs and atomic force microscopy analysis, films prepared with CB showed an evident wrinkle pattern probably due to the strong interactions between the polymers, which were observed by FTIR and DTA-TGA. The in vitro activity of the formulations against Candida krusei and Candida parapsilosis was twice as greater as the commercial cream, probably as a result of the antifungal combination of the drug with the CH activity. All these results suggest that these polymeric films containing ECN are potential candidates in view of alternatives dosages forms for the treatment of the yeast assayed.Fil: Real, Daniel Andres. Universidad Nacional de Rosario; ArgentinaFil: Martinez, Maria V.. Universidad Nacional de Rosario; ArgentinaFil: Frattini, Agustin Lujan. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Soazo, Marina del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Luque, Alicia G.. Universidad Nacional de Rosario; ArgentinaFil: Biasoli, Marisa S.. Universidad Nacional de Rosario; ArgentinaFil: Salomon, Claudio Javier. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; ArgentinaFil: Leonardi, Darío. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Química Rosario; Argentin

    Drop-out rate among patients treated with omalizumab for severe asthma: Literature review and real-life experience

    Get PDF
    In patients with asthma, particularly severe asthma, poor adherence to inhaled drugs negatively affects the achievement of disease control. A better adherence rate is expected in the case of injected drugs, such as omalizumab, as they are administered only in a hospital setting. However, adherence to omalizumab has never been systematically investigated. The aim of this study was to review the omalizumab drop-out rate in randomized controlled trials (RCTs) and real-life studies. A comparative analysis was performed between published data and the Italian North East Omalizumab Network (NEONet) database

    Bithiazole Inhibitors of Phosphatidylinositol 4-Kinase (PI4KIIIβ) as Broad-Spectrum Antivirals Blocking the Replication of SARS-CoV-2, Zika Virus, and Human Rhinoviruses

    Get PDF
    Over half a century since the description of the first antiviral drug, “old” re-emerging viruses and “new” emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIβ, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIβ block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIβ inhibition, the role of PI4KIIIβ in SARS-CoV-2 entry/replication is debated

    Computational Identification of Phospho-Tyrosine Sub-Networks Related to Acanthocyte Generation in Neuroacanthocytosis

    Get PDF
    Acanthocytes, abnormal thorny red blood cells (RBC), are one of the biological hallmarks of neuroacanthocytosis syndromes (NA), a group of rare hereditary neurodegenerative disorders. Since RBCs are easily accessible, the study of acanthocytes in NA may provide insights into potential mechanisms of neurodegeneration. Previous studies have shown that changes in RBC membrane protein phosphorylation state affect RBC membrane mechanical stability and morphology. Here, we coupled tyrosine-phosphoproteomic analysis to topological network analysis. We aimed to predict signaling sub-networks possibly involved in the generation of acanthocytes in patients affected by the two core NA disorders, namely McLeod syndrome (MLS, XK-related, Xk protein) and chorea-acanthocytosis (ChAc, VPS13A-related, chorein protein). The experimentally determined phosphoproteomic data-sets allowed us to relate the subsequent network analysis to the pathogenetic background. To reduce the network complexity, we combined several algorithms of topological network analysis including cluster determination by shortest path analysis, protein categorization based on centrality indexes, along with annotation-based node filtering. We first identified XK- and VPS13A-related protein-protein interaction networks by identifying all the interactomic shortest paths linking Xk and chorein to the corresponding set of proteins whose tyrosine phosphorylation was altered in patients. These networks include the most likely paths of functional influence of Xk and chorein on phosphorylated proteins. We further refined the analysis by extracting restricted sets of highly interacting signaling proteins representing a common molecular background bridging the generation of acanthocytes in MLS and ChAc. The final analysis pointed to a novel, very restricted, signaling module of 14 highly interconnected kinases, whose alteration is possibly involved in generation of acanthocytes in MLS and ChAc

    Neuroacanthocytosis associated with a defect of the 4.1R membrane protein

    Get PDF
    BACKGROUND: Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. CASE PRESENTATION: All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 ± 0.42) than in controls (4.41 ± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. CONCLUSION: A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission

    Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole

    Get PDF
    Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure

    Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability

    Get PDF
    Background: The current extensive use of the domestic goat (Capra hircus) is the result of its medium size and high adaptability as multiple breeds. The extent to which its genetic variability was influenced by early domestication practices is largely unknown. A common standard by which to analyze maternally-inherited variability of livestock species is through complete sequencing of the entire mitogenome (mitochondrial DNA, mtDNA). Results: We present the first extensive survey of goat mitogenomic variability based on 84 complete sequences selected from an initial collection of 758 samples that represent 60 different breeds of C. hircus, as well as its wild sister species, bezoar (Capra aegagrus) from Iran. Our phylogenetic analyses dated the most recent common ancestor of C. hircus to ~460,000 years (ka) ago and identified five distinctive domestic haplogroups (A, B1, C1a, D1 and G). More than 90 % of goats examined were in haplogroup A. These domestic lineages are predominantly nested within C. aegagrus branches, diverged concomitantly at the interface between the Epipaleolithic and early Neolithic periods, and underwent a dramatic expansion starting from ~12–10 ka ago. Conclusions: Domestic goat mitogenomes descended from a small number of founding haplotypes that underwent domestication after surviving the last glacial maximum in the Near Eastern refuges. All modern haplotypes A probably descended from a single (or at most a few closely related) female C. aegagrus. Zooarchaelogical data indicate that domestication first occurred in Southeastern Anatolia. Goats accompanying the first Neolithic migration waves into the Mediterranean were already characterized by two ancestral A and C variants. The ancient separation of the C branch (~130 ka ago) suggests a genetically distinct population that could have been involved in a second event of domestication. The novel diagnostic mutational motifs defined here, which distinguish wild and domestic haplogroups, could be used to understand phylogenetic relationships among modern breeds and ancient remains and to evaluate whether selection differentially affected mitochondrial genome variants during the development of economically important breeds
    corecore