128 research outputs found

    Effect of Continuous Positive Airway Pressure on Inflammatory, Antioxidant, and Depression Biomarkers in Women With Obstructive Sleep Apnea: A Randomized Controlled Trial

    Get PDF
    Study objectives: The effect of continuous positive airway pressure (CPAP) on mediators of cardiovascular disease and depression in women with obstructive sleep apnea (OSA) is unknown. We aimed to assess the effect of CPAP therapy on a variety of biomarkers of inflammation, antioxidant activity, and depression in women with OSA. Methods: We conducted a multicenter, randomized controlled trial in 247 women diagnosed with moderate-to-severe OSA (apnea-hypopnea index [AHI] ? 15). Women were randomized to CPAP (n = 120) or conservative treatment (n = 127) for 12 weeks. Changes in tumor necrosis factor ? (TNF?), interleukin 6 (IL-6), C-reactive protein (CRP), intercellular adhesion molecule 1 (ICAM-1), catalase (CAT), superoxide dismutase (SOD), and brain-derived neurotrophic factor (BDNF) were assessed. Additional analyses were conducted in subgroups of clinical interest. Results: Women had a median (25th-75th percentiles) age of 58 (51-65) years, body mass index 33.5 (29.0-38.3) kg/m2, and AHI 33.3 (22.8-49.3). No differences were found between groups in the baseline levels of the biomarkers. After 12 weeks of follow-up, there were no changes between groups in any of the biomarkers assessed. These results did not change when the analyses were restricted to sleepy women or to those with severe OSA. In women with CPAP use at least 5 hours per night, only TNF? levels decreased compared to the control group (-0.29 ± 1.1 vs -0.06 ± 0.53, intergroup difference -0.23 [95% CI = -0.03 to -0.50]; p = 0.043). Conclusions: Twelve weeks of CPAP therapy does not improve biomarkers of inflammation, antioxidant activity, or depression compared to conservative treatment in women with moderate-to-severe OSA

    Mass Transfer and Volume Changes in French Fries During Air Frying

    Full text link
    An erratum to this article can be found at http://dx.doi.org/10.1007/s11947-012-0904-8 (The graph located in the left upper corner of Fig. 2 is incorrect)The production of healthier fried foods requires the adaptation of industrial processes. In this context, air frying is an alternative to deep oil frying to obtain French fries with lower fat content. Kinetic analysis of compositional changes and main fluxes involved in air frying were carried out, and the results were compared to those obtained for deep oil frying. The influence of the type of sample (unpretreated, frozen, or blanched potatoes) was also analyzed. The results showed that oil uptake is much lower in air frying although a much longer processing time is required. Also, water loss and thus the loss of volume were much higher in air frying compared to the conventional process.The authors would like to thank the Universitat Politecnica de Valencia (PAID-06-09-2876) for the financial support given to this investigation.Andrés Grau, AM.; Argüelles Foix, AL.; Castelló Gómez, ML.; Heredia Gutiérrez, AB. (2013). Mass Transfer and Volume Changes in French Fries During Air Frying. Food and Bioprocess Technology. 6(8):1917-1924. https://doi.org/10.1007/s11947-012-0861-2S1917192468Aguilar, C. N., Anzaldúa-Morales, R., Talamás, R., & Gastélum, G. (1997). Low-temperature blanch improves textural quality of French-fries. Journal of Food Science, 62, 568–571.AOAC. (1980). Official methods of analysis (12th ed.). Washington, D.C., USA: Association of Official Analytical Chemists.Califano, A. N., & Calvelo, A. (1987). Adjustment of surface concentration of reducing sugars before frying of potato strips. Journal of Food Processing and Preservation, 12, 1–9.Clark, J. P. (2003). Happy birthday, potato chip! And other snack developments. Food Technology, 57(5), 89–92.Debnath, S., Bhat, K. K., & Rastogi, N. K. (2003). Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food. LWT—Food Science and Technology, 36, 91–98.Du Pont, M. S., Kirby, A. B., & Smith, A. C. (1992). Instrumental and sensory tests of cooked frozen French fries. International Journal of Food Science and Technology, 27, 285–295.Dueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149.Hubbard, L. J., & Farkas, B. E. (2000). Influence of oil temperature on convective heat transfer during immersion frying. Journal of Food Processing and Preservation, 24(2), 143–162.Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44, 39–46.Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J. M., Verhé, R., Van Peteghem, C., & De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT- Food Science and Technology, 41(9), 1648–1654.Mohsenin, N. M. (1986). Physical properties of plant and animal materials. Nueva York: Gordon and Breach.Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices: effect of pre-treatments. LWT- Food Science and Technology, 39, 285–291.Ngadi, M. O., Wang, Y., Adedeji, A. A., & Raghavan, G. S. V. (2009). Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT- Food Science and Technology, 42(1), 438–440.Pedreschi, F., & Moyano, P. (2005). Oil uptake and texture development in fried potato slices. Journal of Food Engineering, 70(4), 557–563.Saguy, S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56, 143–152.Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT- Food Science and Technology, 42(6), 1164–1173

    Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro

    Get PDF
    Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds

    Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial

    Get PDF
    Background Epidemiological evidence suggests that consumption of cruciferous vegetables is associated with reduced risk of prostate cancer progression, largely attributed to the biological activity of glucosinolate degradation products, such as sulforaphane derived from glucoraphanin. Because there are few therapeutic interventions for men on active surveillance for prostate cancer to reduce the risk of cancer progression, dietary approaches are an appealing option for patients. Objective We evaluated whether consumption of a glucoraphanin-rich broccoli soup for 1 y leads to changes in gene expression in prostate tissue of men with localized prostate cancer. Methods Forty-nine men on active surveillance completed a 3-arm parallel randomized double-blinded intervention study for 12 mo and underwent transperineal template biopsy procedures and dietary assessment at the start and end of the study. Patients received a weekly 300 mL portion of soup made from a standard broccoli (control) or from 1 of 2 experimental broccoli genotypes with enhanced concentrations of glucoraphanin, delivering 3 and 7 times that of the control, respectively. Gene expression in tissues from each patient obtained before and after the dietary intervention was quantified by RNA sequencing followed by gene set enrichment analyses. Results In the control arm, there were several hundred changes in gene expression in nonneoplastic tissue during the 12 mo. These were associated with an increase in expression of potentially oncogenic pathways including inflammation processes and epithelial–mesenchymal transition. Changes in gene expression and associated oncogenic pathways were attenuated in men on the glucoraphanin-rich broccoli soup in a dose-dependent manner. Although the study was not powered to assess clinical progression, an inverse association between consumption of cruciferous vegetables and cancer progression was observed. Conclusion Consuming glucoraphanin-rich broccoli soup affected gene expression in the prostate of men on active surveillance, consistent with a reduction in the risk of cancer progression. This trial was registered at clinicaltrials.gov as NCT01950143

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore