140 research outputs found

    Earthworm uptake routes and rates of ionic Zn and ZnO nanoparticles at realistic concentrations, traced using stable isotope labeling

    Get PDF
    The environmental behavior of ZnO nanoparticles (NPs), their availability to, uptake pathways by, and biokinetics in the earthworm Lumbricus rubellus were investigated using stable isotope labeling. Zinc isotopically enriched to 99.5% in 68Zn (68Zn-E) was used to prepare 68ZnO NPs and a dissolved phase of 68Zn for comparison. These materials enabled tracing of environmentally relevant (below background) NP additions to soil of only 5 mg 68Zn-E kg–1. Uptake routes were isolated by introducing earthworms with sealed and unsealed mouthparts into test soils for up to 72 h. The Zn isotope compositions of the soils, pore waters and earthworms were then determined using multiple collector inductively coupled plasma mass spectrometry. Detection and quantification of 68Zn-E in earthworm tissue was possible after only 4 h of dermal exposure, when the uptake of 68Zn-E had increased the total Zn tissue concentration by 0.03‰. The results demonstrate that at these realistic exposure concentrations there is no distinguishable difference between the uptake of the two forms of Zn by the earthworm L. rubellus, with the dietary pathway accounting for ∼95% of total uptake. This stands in contrast to comparable studies where high dosing levels were used and dermal uptake is dominant

    Central neurogenetic signatures of the visuomotor integration system

    Get PDF
    Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes

    Different routes, same pathways: molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    Get PDF
    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms

    Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida

    Get PDF
    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies

    Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus

    Get PDF
    Current bioavailability models, such as the free ion activity model and biotic ligand model, explicitly consider that metal exposure will be mainly to the dissolved metal in ionic form. With the rise of nanotechnology products and the increasing release of metal-based nanoparticles (NPs) to the environment, such models may increasingly be applied to support risk assessment. It is not immediately clear, however, whether the assumption of metal ion exposure will be relevant for NPs. Using an established approach of oral gluing, a toxicokinetics study was conducted to investigate the routes of silver nanoparticles (AgNPs) and Ag+ ion uptake in the soil-dwelling earthworm Lumbricus rubellus. The results indicated that a significant part of the Ag uptake in the earthworms is through oral/gut uptake for both Ag+ ions and NPs. Thus, sealing the mouth reduced Ag uptake by between 40% and 75%. An X-ray analysis of the internal distribution of Ag in transverse sections confirmed the presence of increased Ag concentrations in exposed earthworm tissues. For the AgNPs but not the Ag+ ions, high concentrations were associated with the gut wall, liver-like chloragogenous tissue, and nephridia, which suggest a pathway for AgNP uptake, detoxification, and excretion via these organs. Overall, the results indicate that Ag in the ionic and NP forms is assimilated and internally distributed in earthworms and that this uptake occurs predominantly via the gut epithelium and less so via the body wall. The importance of oral exposure questions the application of current metal bioavailability models, which implicitly consider that the dominant route of exposure is via the soil solution, for bioavailability assessment and modeling of metal-based NPs

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.This work was supported by H2020 EU project “Reground” Grant Agreement N◦ 641768. (www.reground-project.eu/). The authors gratefully acknowledge the valuable contribution of Sofia Credaro, who assisted in the proofreading and language editing of the manuscript. The authors thank the constructive comments by two anonymous reviewers

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very het-erogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concen-trations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ±266 nm diameter were injected at low pressure (<0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 ×3 ×9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post- injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions

    [Healthcare challenges for people with diabetes during the national state of emergency due to COVID-19 in Lima, Peru: primary healthcare recommendations].

    Get PDF
    Patients diagnosed with type 2 diabetes mellitus, who then become infected with SARS-CoV-2, are at greater risk of developing complications from COVID-19, which may even lead to death. Diabetes is a chronic condition that requires continuous contact with healthcare facilities; therefore, this type of patients should have regular access to medicines, tests and appointments with healthcare personnel. In Peru, care and treatment continuity have been affected since the national state of emergency due to COVID-19 began; because many healthcare facilities suspended outpatient consultations. The strategies presented in this study were developed by different Peruvian health providers in the pandemic context to ensure care continuity for people with diabetes. This article provides recommendations to strengthen primary healthcare, because it is the first level of healthcare contact for patients with diabetes

    Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis

    Get PDF
    Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis

    The association of living donor source with patient and graft survival among kidney transplant recipients in the ERA-EDTA Registry - a retrospective study

    Get PDF
    In this study we aimed to compare patient and graft survival of kidney transplant recipients who received a kidney from a living-related donor (LRD) or living-unrelated donor (LUD). Adult patients in the ERA-EDTA Registry who received their first kidney transplant in 1998-2017 were included. Ten-year patient and graft survival were compared between LRD and LUD transplants using Cox regression analysis. In total, 14 370 patients received a kidney from a living donor. Of those, 9212 (64.1%) grafts were from a LRD, 5063 (35.2%) from a LUD and for 95 (0.7%), the donor type was unknown. Unadjusted five-year risks of death and graft failure (including death as event) were lower for LRD transplants than for LUD grafts: 4.2% (95% confidence interval [CI]: 3.7-4.6) and 10.8% (95% CI: 10.1-11.5) versus 6.5% (95% CI: 5.7-7.4) and 12.2% (95% CI: 11.2-13.3), respectively. However, after adjusting for potential confounders, associations disappeared with hazard ratios of 0.99 (95% CI: 0.87-1.13) for patient survival and 1.03 (95% CI: 0.94-1.14) for graft survival. Unadjusted risk of death-censored graft failure was similar, but after adjustment, it was higher for LUD transplants (1.19; 95% CI: 1.04-1.35). In conclusion, patient and graft survival of LRD and LUD kidney transplant recipients was similar, whereas death-censored graft failure was higher in LUD. These findings confirm the importance of both living kidney donor types.Peer reviewe
    corecore