20 research outputs found

    As the Duck Flies—Estimating the Dispersal of Low-Pathogenic Avian Influenza Viruses by Migrating Mallards

    Get PDF
    Many pathogens rely on the mobility of their hosts for dispersal. In order to understand and predict how a disease can rapidly sweep across entire continents, illuminating the contributions of host movements to disease spread is pivotal. While elegant proposals have been made to elucidate the spread of human infectious diseases, the direct observation of long-distance dispersal events of animal pathogens is challenging. Pathogens like avian influenza A viruses, causing only short disease in their animal hosts, have proven exceptionally hard to study. Here, we integrate comprehensive data on population and disease dynamics for low-pathogenic avian influenza viruses in one of their main hosts, the mallard, with a novel movement model trained from empirical, high-resolution tracks of mallard migrations. This allowed us to simulate individual mallard migrations from a key stopover site in the Baltic Sea for the entire population and link these movements to infection simulations. Using this novel approach, we were able to estimate the dispersal of low-pathogenic avian influenza viruses by migrating mallards throughout several autumn migratory seasons and predicted areas that are at risk of importing these viruses. We found that mallards are competent vectors and on average dispersed viruses over distances of 160 km in just 3 h. Surprisingly, our simulations suggest that such dispersal events are rare even throughout the entire autumn migratory season. Our approach directly combines simulated population-level movements with local infection dynamics and offers a potential converging point for movement and disease ecology

    Integrating animal movement with habitat suitability for estimating dynamic landscape connectivity

    Full text link
    Context: High-resolution animal movement data are becoming increasingly available, yet having a multitude of trajectories alone does not allow us to easily predict animal movement. To answer ecological and evolutionary questions at a population level, quantitative estimates of a species' potential to act as a link between patches, populations, or ecosystems are of importance. Objectives: We introduce an approach that combines movement-informed simulated trajectories with an environment-informed estimate of their ecological likelihood. With this approach, we estimated connectivity at the landscape level throughout the annual cycle of bar-headed geese (Anser indicus) in its native range. Methods: We used a tracking dataset of bar-headed geese to parameterise a multi-state movement model and to estimate temporally explicit habitat suitability within the species' range. We simulated migratory movements between range fragments, and estimated their ecological likelihood. The results are compared to expectations derived from published literature. Results: Simulated migrations matched empirical trajectories in key characteristics such as stopover duration. The estimated likelihood of simulated migrations was similar to that of empirical trajectories. We found that the predicted connectivity was higher within the breeding than in wintering areas, corresponding to previous findings for this species. Conclusions: We show how empirical tracking data and environmental information can be fused to make meaningful predictions about future animal movements. These are temporally explicit and transferable even outside the spatial range of the available data. Our integrative framework will prove useful for modelling ecological processes facilitated by animal movement, such as seed dispersal or disease ecology

    Linking colony size with quantitative estimates of ecosystem services of African fruit bats

    No full text
    Animal-mediated seed dispersal is a pivotal component of functioning forest ecosystems all over the globe. Animals that disperse seeds away from their parental plants increase the seeds' chances of survival by releasing them from competition and specialised predators and so contribute to maintain the biodiversity of forests. Furthermore, seeds dispersed into deforested areas provide the opportunity for reforestation. Forest regeneration especially depends on animals that cover large distances easily and cross forest gaps, in particular large-bodied frugivores or mobile species such as birds and bats. Yet, frugivores have started to disappear from forests everywhere, with potentially dramatic consequences for forest composition, regeneration and overall forest biomass. Identifying which species contribute substantially to the dispersal of viable seeds, and how these services are affected by fluctuations in population size, is thus pivotal to the understanding and conservation of forest ecosystems.publishe

    Migration distance affects how closely Eurasian wigeons follow spring phenology during migration

    No full text
    Background: The timing of migration for herbivorous migratory birds is thought to coincide with spring phenologyas emerging vegetation supplies them with the resources to fuel migration, and, in species with a capital breedingstrategy also provides individuals with energy for use on the breeding grounds. Individuals with very long migrationdistances might however have to trade of between utilising optimal conditions en route and reaching the breeding grounds early, potentially leading to them overtaking spring on the way. Here, we investigate whether migrationdistance afects how closely individually tracked Eurasian wigeons follow spring phenology during spring migration. Methods: We captured wigeons in the Netherlands and Lithuania and tracked them throughout spring migration toidentify staging sites and timing of arrival. Using temperature-derived indicators of spring phenology, we investigatedhow maximum longitude reached and migration distance afected how closely wigeons followed spring. We furtherestimated the impact of tagging on wigeon migration by comparing spring migratory timing between tracked individuals and ring recovery data sets. Results: Wigeons migrated to locations between 300 and 4000 km from the capture site, and migrated up to1000 km in a single day. We found that wigeons migrating to more north-easterly locations followed spring phenology more closely, and increasingly so the greater distance they had covered during migration. Yet we also found thatdespite tags equalling only around 2% of individual’s body mass, individuals were on average 11–12 days slower thanring-marked individuals from the same general population. Discussion: Overall, our results suggest that migratory strategy can vary dependent on migration distance withinspecies, and even within the same migratory corridor. Individual decisions thus depend not only on environmentalcues, but potentially also trade-ofs made during later life-history stages

    Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls

    Get PDF
    Anthropogenic inputs into the environment may serve as sources of antimicrobial resistant bacteria and alter the ecology and population dynamics of synanthropic wild animals by providing supplemental forage. In this study, we used a combination of phenotypic and genomic approaches to characterize antimicrobial resistant indicator bacteria, animal telemetry to describe host movement patterns, and a novel modeling approach to combine information fromthese diverse data streams to investigate the acquisition and long-distance dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Our results provide evidence that gulls acquire antimicrobial resistant bacteria from anthropogenic sources, which they may subsequently disperse across and between continents via migratory movements. Furthermore,we introduce a flexible modeling framework to estimate the relative dispersal risk of antimicrobial resistant bacteria in western North America and adjacent areas within East Asia, which may be adapted to provide information on the risk of dissemination of other organisms and pathogens maintained by wildlife through space and time

    Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity

    Full text link
    Context High-resolution animal movement data are becoming increasingly available, yet having a multitude of empirical trajectories alone does not allow us to easily predict animal movement. To answer ecological and evolutionary questions at a population level, quantitative estimates of a species’ potential to link patches or populations are of importance. Objectives We introduce an approach that combines movement-informed simulated trajectories with an environment-informed estimate of the trajectories’ plausibility to derive connectivity. Using the example of bar-headed geese we estimated migratory connectivity at a landscape level throughout the annual cycle in their native range. Methods We used tracking data of bar-headed geese to develop a multi-state movement model and to estimate temporally explicit habitat suitability within the species’ range. We simulated migratory movements between range fragments, and calculated a measure we called route viability. The results are compared to expectations derived from published literature. Results Simulated migrations matched empirical trajectories in key characteristics such as stopover duration. The viability of the simulated trajectories was similar to that of the empirical trajectories. We found that, overall, the migratory connectivity was higher within the breeding than in wintering areas, corroborating previous findings for this species. Conclusions We show how empirical tracking data and environmental information can be fused for meaningful predictions of animal movements throughout the year and even outside the spatial range of the available data. Beyond predicting migratory connectivity, our framework will prove useful for modelling ecological processes facilitated by animal movement, such as seed dispersal or disease ecology

    Large birds travel farther in homogeneous environments

    No full text
    Aim: Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos).Location: GlobalTime period: 2003-2015Methods: We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation.Results: We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds.Main conclusions: We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.publishe

    Tracking reveals limited interactions between Campbell Albatross and fisheries during the breeding season

    No full text
    Fisheries-related mortality has been influential in driving global declines in seabird populations. Understanding the overlap between seabird distribution and fisheries is one important element in assessing bycatch risk, and may be achieved by tracking the movements of individual birds and fishing vessels. Here, we assess the spatiotemporal overlap between the vulnerable Campbell Albatross Thalassarche impavida and large (>28 m) commercial fishing boats in New Zealand’s Exclusive Economic Zone (EEZ). We used a novel analytical approach, bivariate Gaussian bridge movement modelling, to compute spatiotemporal utilization distributions of bird-borne global positioning system (GPS) loggers and data from the Vessel Monitoring System. We tracked birds for 28,815 h during incubation and chick brooding, with half of this time spent within New Zealand’s EEZ, utilizing 6.7% of the available area. However, there was no evidence that albatrosses and fishing vessels were in the same location simultaneously. We accounted for the broader ecological footprint of fishing vessels by calculating the distance between GPS-fix locations for albatrosses and fishing vessels, revealing that albatrosses were within 30 km of fishing vessels in 8.4% of foraging trips. This highlights differences in estimated fine-scale spatiotemporal overlaps which may be due to the distance between albatrosses and vessels or the methods used. Overall, the low levels of spatial overlap could be a result of Campbell Albatross’ preference for foraging in areas without fishing activity or competitive exclusion by other species. Our results reinforce the importance of multi-scale, temporally explicit, and multi-national approaches to risk assessment, as Campbell Albatrosses spend approximately half of their time foraging outside New Zealand’s EEZ

    Migration headings.

    No full text
    <p>Initial and total headings for both winter and spring migration. For winter migration, only total headings are given, as often not enough data points were available to distinguish an initial heading. Headings are given as mean and standard deviation.</p
    corecore