78 research outputs found

    Anisotropic diffusion in continuum relaxation of stepped crystal surfaces

    Full text link
    We study the continuum limit in 2+1 dimensions of nanoscale anisotropic diffusion processes on crystal surfaces relaxing to become flat below roughening. Our main result is a continuum law for the surface flux in terms of a new continuum-scale tensor mobility. The starting point is the Burton, Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps whose motion drives surface evolution. Our derivation is based on the separation of local space variables into fast and slow. The model includes: (i) anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps; (ii) diffusion of atoms along step edges; and (iii) attachment-detachment of atoms at step edges. We derive a parabolic fourth-order, fully nonlinear partial differential equation (PDE) for the continuum surface height profile. An ingredient of this PDE is the surface mobility for the adatom flux, which is a nontrivial extension of the tensor mobility for isotropic terrace diffusion derived previously by Margetis and Kohn. Approximate, separable solutions of the PDE are discussed.Comment: 14 pages, 1 figur

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Azimuthal anisotropy at RHIC: the first and fourth harmonics

    Get PDF
    We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data tables are at http://www.star.bnl.gov/central/publications/pubDetail.php?id=3

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis

    Get PDF
    Background. Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper‐limb sensorimotor impairment. We investigated associations between non‐lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results. Cross‐sectional T1‐weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta‐Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA‐UE (Fugl‐Meyer Assessment of Upper Extremity). Robust mixed‐effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni‐corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=−0.26) and contralesional (P=0.006; β=−0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=−0.21) and extent of sensorimotor damage (P=0.003; β=−0.15). Conclusions. The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.S.-L.L. is supported by NIH K01 HD091283; NIH R01 NS115845. A.B. and M.S.K. are supported by National Health and Medical Research Council (NHMRC) GNT1020526, GNT1045617 (A.B.), GNT1094974, and Heart Foundation Future Leader Fellowship 100784 (A.B.). P.M.T. is supported by NIH U54 EB020403. L.A.B. is supported by the Canadian Institutes of Health Research (CIHR). C.M.B. is supported by NIH R21 HD067906. W.D.B. is supported by the Heath Research Council of New Zealand. J.M.C. is supported by NIH R00HD091375. A.B.C. is supported by NIH R01NS076348-01, Hospital Israelita Albert Einstein 2250-14, CNPq/305568/2016-7. A.N.D. is supported by funding provided by the Texas Legislature to the Lone Star Stroke Clinical Trial Network. Its contents are solely the responsibility of the authors and do not necessarily represent the of ficial views of the Government of the United States or the State of Texas. N.E.-B. is supported by Australian Research Council NIH DE180100893. W.F. is sup ported by NIH P20 GM109040. F.G. is supported by Wellcome Trust (093957). B.H. is funded by and NHMRC fellowship (1125054). S.A.K is supported by NIH P20 HD109040. F.B. is supported by Italian Ministry of Health, RC 20, 21. N.S. is supported by NIH R21NS120274. N.J.S. is supported by NIH/National Institute of General Medical Sciences (NIGMS) 2P20GM109040-06, U54-GM104941. S.R.S. is supported by European Research Council (ERC) (NGBMI, 759370). G.S. is supported by Italian Ministry of Health RC 18-19-20-21A. M.T. is sup ported by National Institute of Neurological Disorders and Stroke (NINDS) R01 NS110696. G.T.T. is supported by Temple University sub-award of NIH R24 –NHLBI (Dr Mickey Selzer) Center for Experimental Neurorehabilitation Training. N.J.S. is funded by NIH/National Institute of Child Health and Human Development (NICHD) 1R01HD094731-01A1

    NA49 Results on Single Particle and Correlation Measurements in Central Pb+Pb Collisions

    Get PDF
    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS

    Mid-rapidity anti-proton to proton ratio from Au+Au collisions at sNN=130 \sqrt{s_{NN}} = 130 GeV

    Full text link
    We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of y<0.5|y|<0.5 and 0.4 <pt<<p_t< 1.0 GeV/cc, the ratio is essentially independent of either transverse momentum or rapidity, with an average of 0.65±0.01(stat.)±0.07(syst.)0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)} for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the pp-\pb pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let

    Transverse-momentum ptp_t correlations on (η,ϕ)(\eta,\phi) from mean-ptp_{t} fluctuations in Au-Au collisions at sNN=\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present first measurements of the pseudorapidity and azimuth (η,ϕ)(\eta,\phi) bin-size dependence of event-wise mean transverse momentum fluctuations for Au-Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV. We invert that dependence to obtain ptp_t autocorrelations on differences (ηΔ,ϕΔ)(\eta_\Delta,\phi_\Delta) interpreted to represent velocity/temperature distributions on (η,ϕ\eta,\phi). The general form of the autocorrelations suggests that the basic correlation mechanism is parton fragmentation. The autocorrelations vary strongly with collision centrality, which suggests that fragmentation is strongly modified by a dissipative medium in the more central Au-Au collisions relative to peripheral or p-p collisions. \\Comment: 7 pages, 3 figure
    corecore