47 research outputs found

    Mangroves in Contrasting Osmotic Environments: Photosynthetic Costs of High Salinity Tolerance

    Get PDF
    Mangrove trees of the salt secreting Avicennia germinans and the non-secreting Rhizophora mangle were investigated at the northern coast of Venezuela at a low salinity site (127 mmol kg−1) and two hypersaline sites (1600–1800 mmol kg−1). Leaf sap osmolality and mass/area ratio of both species were positively correlated, while size was negatively correlated with soil salinity. Leaf sap osmolality was always higher in Avicennia and exceeded soil solution osmolality. Salinity increased the concentration of 1D-1-O-methyl-muco-inositol (OMMI) in Rhizophora and glycinebetaine in Avicennia. The latter could make up to 21% of total leaf nitrogen (N). Nitrogen concentration was higher in Avicennia, but subtracting the N bound in glycinebetaine eliminated interspecific differences. Photosynthetic rates were higher in Avicennia, and they decreased with salinity in both species. Leaf conductance (gl) and light saturated photosynthesis (Asat) were highly correlated, but reduction of gl at the hypersaline sites was more pronounced than Asat increasing water use efficiency in both species. Lower values of 13C discrimination at the hypersaline sites evidenced higher long-term water use efficiency. Apparent quantum yield and carboxylation efficiency decreased with salinity in both species. Rhizophora was more sensitive to high salinity than Avicennia, suggesting that glycinebetaine is a better osmoprotectant than OMMI

    Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event

    Get PDF
    Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood. We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N) turnover to further drought and rewetting. In a mountain grassland, we conducted a 13C pulse-chase experiment during a naturally occurring drought and rewetting event in plots previously exposed to experimental droughts and in ambient controls (AC). After labelling, we traced 13C below-ground allocation and incorporation into soil microbes using phospholipid fatty acid biomarkers. Drought history (DH) had no effects on the standing shoot and fine root plant biomass. However, plants with experimental DH displayed decreased shoot N concentrations and increased fine root N concentrations relative to those in AC. During the natural drought, plants with DH assimilated and allocated less 13C below-ground; moreover, fine root respiration was reduced and not fuelled by fresh C compared to plants in AC. Regardless of DH, microbial biomass remained stable during natural drought and rewetting. Although microbial communities initially differed in their composition between soils with and without DH, they responded to the natural drought and rewetting in a similar way: gram-positive bacteria increased, while fungal and gram-negative bacteria remained stable. In soils with DH, a strongly reduced uptake of recent plant-derived 13C in microbial biomarkers was observed during the natural drought, pointing to a smaller fraction of active microbes or to a microbial community that is less dependent on plant C. Synthesis. Drought history can induce changes in above- vs. below-ground plant N concentrations and affect the response of plant C turnover to further droughts and rewetting by decreasing plant C uptake and below-ground allocation. DH does not affect the responses of the microbial community to further droughts and rewetting, but alters microbial functioning, particularly the turnover of recent plant-derived carbon, during and after further drought periods. © 2016 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ

    Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite

    Get PDF
    The naturally occurring nitrogen (N) isotopes,N-15 and(14)N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO2-), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process. However, the kinetic isotope effect of AMO, or epsilon(AMO), has been typically determined based on isotope kinetics during product formation (cumulative product, NO2-) alone, which may have overestimated epsilon(AMO)due to possible accumulation of chemical intermediates and alternative sinks of ammonia/ammonium (NH3/NH4+). Here, we analyzed(15)N isotope fractionation during archaeal ammonia oxidation based on both isotopic changes in residual substrate (RS, NH4+) and cumulative product (CP, NO2-) pools in pure cultures of the soil strainNitrososphaera viennensisEN76 and in highly enriched cultures of the marine strainNitrosopumilus adriaticusNF5, under non-limiting substrate conditions. We obtained epsilon(AMO)values of 31.9-33.1 parts per thousand for both strains based on RS (delta(NH4+)-N-15) and showed that estimates based on CP (delta(NO2-)-N-15) give larger isotope fractionation factors by 6-8 parts per thousand. Complementary analyses showed that, at the end of the growth period, microbial biomass was(15)N-enriched (10.1 parts per thousand), whereas nitrous oxide (N2O) was highly(15)N depleted (-38.1 parts per thousand) relative to the initial substrate. Although we did not determine the isotope effect of NH(4)(+)assimilation (biomass formation) and N2O production by AOA, our results nevertheless show that the discrepancy between epsilon(AMO)estimates based on RS and CP might have derived from the incorporation of(15)N-enriched residual NH(4)(+)after AMO reaction into microbial biomass and that N2O production did not affect isotope fractionation estimates significantly

    Intrinsic and Synthetic Stable Isotope Marking of Tsetse Flies

    Get PDF
    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of “release”. These techniques could be readily adopted for use in SIT programs as complimentary marking techniques

    Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil

    Get PDF
    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate.Austrian Science Fund (FWF)/CryoCAR

    Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer Ammonia tepida

    No full text
    Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125–250 µm, 250–355 µm, >355 µm) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125–250 µm size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities

    Data from: Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event

    No full text
    Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood. We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N) turnover to further drought and rewetting. In a mountain grassland we conducted a 13C pulse-chase experiment during a naturally occurring drought and rewetting event in plots previously exposed to experimental droughts, and in ambient controls. After labelling we traced 13C below-ground allocation and incorporation into soil microbes using phospholipid fatty acid (PLFAs) biomarkers. Drought history had no effects on the standing shoot and fine root plant biomass. However, plants with experimental drought history displayed decreased shoot N concentrations, and increased fine root N concentrations relative to those in ambient controls. During the natural drought plants with drought history assimilated and allocated less 13C below-ground; moreover, fine root respiration was reduced and not fuelled by fresh C compared to plants in ambient controls. Regardless of drought history microbial biomass remained stable during natural drought and rewetting. Although microbial communities initially differed in their composition between soils with and without drought history, they responded to the natural drought and rewetting in a similar way: gram-positive bacteria increased, while fungal and gram-negative bacteria remained stable. In soils with drought history a strongly reduced uptake of recent plant-derived 13C in microbial biomarkers was observed during the natural drought, pointing to a smaller fraction of active microbes or to a microbial community that is less dependent on plant C. Synthesis: Drought history can induce changes in above- versus below-ground plant N concentrations and affect the response of plant C turnover to further droughts and rewetting by decreasing plant C uptake and below-ground allocation. Drought history does not affect the responses of the microbial community to further droughts and rewetting, but alters microbial functioning, particularly the turnover of recent plant-derived carbon, during and after further drought periods

    Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event

    No full text
    1. Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood. 2. We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N) turnover to further drought and rewetting. In a mountain grassland, we conducted a (13)C pulse‐chase experiment during a naturally occurring drought and rewetting event in plots previously exposed to experimental droughts and in ambient controls (AC). After labelling, we traced (13)C below‐ground allocation and incorporation into soil microbes using phospholipid fatty acid biomarkers. 3. Drought history (DH) had no effects on the standing shoot and fine root plant biomass. However, plants with experimental DH displayed decreased shoot N concentrations and increased fine root N concentrations relative to those in AC. During the natural drought, plants with DH assimilated and allocated less (13)C below‐ground; moreover, fine root respiration was reduced and not fuelled by fresh C compared to plants in AC. 4. Regardless of DH, microbial biomass remained stable during natural drought and rewetting. Although microbial communities initially differed in their composition between soils with and without DH, they responded to the natural drought and rewetting in a similar way: gram‐positive bacteria increased, while fungal and gram‐negative bacteria remained stable. In soils with DH, a strongly reduced uptake of recent plant‐derived (13)C in microbial biomarkers was observed during the natural drought, pointing to a smaller fraction of active microbes or to a microbial community that is less dependent on plant C. 5. Synthesis. Drought history can induce changes in above‐ vs. below‐ground plant N concentrations and affect the response of plant C turnover to further droughts and rewetting by decreasing plant C uptake and below‐ground allocation. DH does not affect the responses of the microbial community to further droughts and rewetting, but alters microbial functioning, particularly the turnover of recent plant‐derived carbon, during and after further drought periods

    An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis.

    Get PDF
    Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a "production" orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats.Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA) profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size.Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet controlled teneral mosquito size and that teneral CN ratio is a sex- and species-specific fixed parameter. This finding has significant implications for overall mosquito competitiveness and environmental management
    corecore