38 research outputs found

    The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein

    Get PDF
    Corynebacterium ammoniagenes contains a ribonucleotide reductase (RNR) of the class Ib type. The small subunit (R2F) of the enzyme has been proposed to contain a manganese center instead of the dinuclear iron center, which in other class I RNRs is adjacent to the essential tyrosyl radical. The nrdF gene of C. ammoniagenes, coding for the R2F component, was cloned in an inducible Escherichia coli expression vector and overproduced under three different conditions: in manganese-supplemented medium, in iron-supplemented medium, and in medium without addition of metal ions. A prominent typical tyrosyl radical EPR signal was observed in cells grown in rich medium. Iron-supplemented medium enhanced the amount of tyrosyl radical, whereas cells grown in manganese-supplemented medium had no such radical. In highly purified R2F protein, enzyme activity was found to correlate with tyrosyl radical content, which in turn correlated with iron content. Similar results were obtained for the R2F protein of Salmonella typhimurium class Ib RNR. The UV-visible spectrum of the C. ammoniagenes R2F radical has a sharp 408-nm band. Its EPR signal at g = 2.005 is identical to the signal of S. typhimurium R2F and has a doublet with a splitting of 0.9 millitesla (mT), with additional hyperfine splittings of 0.7 mT. According to X-band EPR at 77-95 K, the inactive manganese form of the C. ammoniagenes R2F has a coupled dinuclear Mn(II) center. Different attempts to chemically oxidize Mn-R2F showed no relation between oxidized manganese and tyrosyl radical formation. Collectively, these results demonstrate that enzymatically active C. ammoniagenes RNR is a generic class Ib enzyme, with a tyrosyl radical and a diferric metal cofactor

    No germline mutations in supposed tumour suppressor genes SAFB1 and SAFB2 in familial breast cancer with linkage to 19p

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scaffold attachment factor B1 and B2 genes, <it>SAFB1/SAFB2 </it>(both located on chromosome 19p13.3) have recently been suggested as tumour suppressor genes involved in breast cancer development. The assumption was based on functional properties of the two genes and loss of heterozygosity of intragenic markers in breast tumours further strengthened the postulated hypothesis. In addition, linkage studies in Swedish breast cancer families also indicate the presence of a susceptibility gene for breast cancer at the 19p locus. Somatic mutations in <it>SAFB1/SAFB2 </it>have been detected in breast tumours, but to our knowledge no studies on germline mutations have been reported. In this study we investigated the possible involvement of <it>SAFB1/SAFB2 </it>on familiar breast cancer by inherited mutations in either of the two genes.</p> <p>Results</p> <p>Mutation analysis in families showing linkage to the <it>SAFB1/2 </it>locus was performed by DNA sequencing. The complete coding sequence of the two genes <it>SAFB1 </it>and <it>SAFB2 </it>was analyzed in germline DNA from 31 affected women. No missense or frameshift mutations were detected. One polymorphism was found in <it>SAFB1 </it>and eight polymorphisms were detected in <it>SAFB2</it>. MLPA-anlysis showed that both alleles of the two genes were preserved which excludes gene inactivation by large deletions.</p> <p>Conclusion</p> <p><it>SAFB1 </it>and <it>SAFB2 </it>are not likely to be causative of the hereditary breast cancer syndrome in west Swedish breast cancer families.</p

    Mentorskapet som ett led i ledarskapsutvecklingen

    No full text

    The quality of the outdoor environment influences children's health. -A cross-sectional study of preschools.

    No full text
    AIM: To test how the quality of the outdoor environment of child day care centers (DCCs) influences children's health. METHODS: The environment was assessed using the Outdoor Play Environmental Categories (OPEC) tool; time spent outdoors, and physical activity as measured by pedometer. 172/253 (68%) of children aged 3.0-5.9 from nine DCCs participated in Southern Sweden. Health data collected were body mass index, waist circumference, saliva cortisol, length of night sleep during study, and symptoms and wellbeing which were scored (one-week diary- 121 parent responders). Also, parent-rated wellbeing and health of their child were scored (questionnaire, 132 parent responders). MANOVA, ANOVA and principal component analyses were performed to identify impacts of the outdoor environment on health. RESULTS: High quality outdoor environment at DCCs is associated with several health aspects in children such as leaner body, longer night sleep, better wellbeing and higher mid-morning saliva cortisol levels. CONCLUSION: The quality of the outdoor environment at DCCs influenced the health and wellbeing of preschool children and should be given more attention among health care professionals and community planners. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica

    Two Conserved Tyrosine Residues in Protein R1 Participate in an Intermolecular Electron Transfer in Ribonucleotide Reductase

    No full text
    The enzyme ribonucleotide reductase consists of two nonidentical proteins, R1 and R2, which are each inactive alone. R1 contains the active site and R2 contains a stable tyrosyl radical essential for catalysis. The reduction of ribonucleotides is radical-based, and a long range electron transfer chain between the active site in R1 and the radical in R2 has been suggested. To find evidence for such an electron transfer chain in Escherichia coli ribonucleotide reductase, we converted two conserved tyrosines in R1 into phenylalanines by site-directed mutagenesis. The mutant proteins were shown to be enzymatically inactive. In addition, the mechanism-based inhibitor 2′-azido-2′-deoxy-CDP was incapable of scavenging the R2 radical, and no azido-CDP-derived radical intermediate was formed. We also show that the loss of enzymatic activity was not due to impaired R1-R2 complex formation or substrate binding. Based on these results, we predict that the two tyrosines, Tyr-730 and Tyr-731, are part of a hydrogen-bonded network that constitutes an electron transfer pathway in ribonucleotide reductase. It is demonstrated that there is no electron delocalization over these tyrosines in the resting wild-type complex

    Compounds with capacity to quench the tyrosyl radical in Pseudomonas aeruginosa ribonucleotide reductase

    No full text
    Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis. All nine inhibitors were found to efficiently quench the tyrosyl radical present in RNR, required for catalysis. Three different mechanisms of radical quenching were identified, and shown to depend on reduction potential of the assay solution and quaternary structure of the protein complex. These results form a good foundation for further development of P. aeruginosa selective antibiotics. Moreover, this study underscores the complex nature of RNR inhibition and the need for detailed spectroscopic studies to unravel the mechanism of RNR inhibitors
    corecore