62 research outputs found

    Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Evaluating the impact of an enhanced triage process on the performance and diagnostic yield of oesophageal physiology studies post COVID-19

    No full text
    OBJECTIVES: The COVID-19 pandemic significantly impacted on the provision of oesophageal physiology investigations. During the recovery phase, triaging tools were empirically recommended by national bodies for prioritisation of referrals amidst rising waiting lists and reduced capacity. We evaluated the performance of an enhanced triage process (ETP) consisting of telephone triage combined with the hierarchical ‘traffic light system’ recommended in the UK for prioritising oesophageal physiology referrals. DESIGN: In a cross-sectional study of patients referred for oesophageal physiology studies at a tertiary centre, data were compared between patients who underwent oesophageal physiology studies 6 months prior to the COVID-19 pandemic and those who were investigated within 6 months after service resumption with implementation of the ETP. OUTCOME MEASURES: Adjusted time from referral to investigation; non-attendance rates; the detection of Chicago Classification (CC) oesophageal motility disorders on oesophageal manometry and severity of acid reflux on 24 hours pH/impedance monitoring. RESULTS: Following service resumption, the ETP reduced non-attendance rates from 9.1% to 2.8% (p=0.021). Use of the ‘traffic light system’ identified a higher proportion of patients with CC oesophageal motility disorders in the ‘amber’ and ‘red’ triage categories, compared with the ‘green’ category (p=0.011). ETP also reduced the time to test for those who were subsequently found to have a major CC oesophageal motility diagnosis compared with those with minor CC disorders and normal motility (p=0.004). The ETP did not affect the yield or timing of acid reflux studies. CONCLUSION: ETPs can effectively prioritise patients with oesophageal motility disorders and may therefore have a role beyond the current pandemic

    Novel calpain families and novel mechanisms for calpain regulation in <i>Aplysia</i>

    No full text
    <div><p>Calpains are a family of intracellular proteases defined by a conserved protease domain. In the marine mollusk <i>Aplysia californica</i>, calpains are important for the induction of long-term synaptic plasticity and memory, at least in part by cleaving protein kinase Cs (PKCs) into constitutively active kinases, termed protein kinase Ms (PKMs). We identify 14 genes encoding calpains in <i>Aplysia</i> using bioinformatics, including at least one member of each of the four major calpain families into which metazoan calpains are generally classified, as well as additional truncated and atypical calpains. Six classical calpains containing a penta-EF-hand (PEF) domain are present in <i>Aplysia</i>. Phylogenetic analysis determined that these six calpains come from three separate classical calpain families. One of the classical calpains in <i>Aplysia</i>, AplCCal1, has been implicated in plasticity. We identify three splice cassettes and an alternative transcriptional start site in AplCCal1. We characterize several of the possible isoforms of AplCCal1 <i>in vitro</i>, and demonstrate that AplCCal1 can cleave PKCs into PKMs in a calcium-dependent manner <i>in vitro</i>. We also find that AplCCal1 has a novel mechanism of auto-inactivation through N-terminal cleavage that is modulated through its alternative transcriptional start site.</p></div
    corecore