13 research outputs found

    Demonstration of Physiological Barrier Between Pulpal Odontoblasts and its Perturbation Following Routine Restorative Procedures: A Horseradish Peroxidase Tracing Study in the Rat

    Full text link
    Vascular injection of the macromolecular tracer, horseradish peroxidase (HRP), was used to study the permeability of the odontoblast cell layer in developing and mature rat molar teeth, and to investigate the effect of cavity preparations on the permeability of this epithelioid cell layer in adult animals. HRP injected into the vascular system of normal animals 28 days of age and older was localized histochemically (from 5 to 90 min after injection) throughout the extracellular spaces of the maxillary dental pulps; however, the tracer did not penetrate beyond the tight junctions at the apical region of the odontoblast cell layer, and was absent from the predentin and dentin. In contrast, HRP injected into very young neonatal animals (e.g., day 3) resulted in free passage of HRP between odontoblasts and into the overlying predentin and dentin. When Class V cavities had been prepared in adult maxillary molars after HRP was injected into the blood stream, HRP reaction product penetrated the predentin and dentin immediately beneath the cavity preparation; however, adjacent, un-traumatized areas of predentin and dentin in the operated teeth were devoid of reaction product. These results provide evidence that: (1) a physiological barrier develops between the distal segments of odontoblast cell bodies in normal rat molar teeth between days 15 and 28 of postnatal life, and this barrier prevents the passage of macromolecules from the pulp into the predentin and dentin; and (2) this barrier is perturbed following routine restorative procedures in adult animals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68253/2/10.1177_00220345890680081001.pd

    Electron microscopic demonstration of horseradish peroxidase-tetramethylbenzidine reaction product as a method for identifying sensory nerve fibers in the rat tooth pulp

    Full text link
    The purpose of the present investigation was to determine if the horseradish peroxidase could be used as a method for labeling sensory nerve fibers (specifically, tooth pulp afferents) for detailed ultrastructural analyses. HRP injected into the trigeminal ganglion of adult rats was taken up by ganglion cell bodies and transported anterogradely to their peripheral endings in the dental tissues. Following perfusion-fixation, the teeth were decalcified in EDTA, sectioned, reacted for HRP activity according to the tetramethylbenzidine (TMB) technique, and processed for electron microscopy. The HRP-TMB reaction product was clearly visible within most of the axons in the dental pulp, appearing as conspicuous, rectangular shaped aggregates of fine rods or needles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25061/1/0000489.pd

    Stabilization of tetramethylbenzidine (TMB) reaction product at the electron microscopic level by ammonium molybdate

    Full text link
    The ability to use the tetramethylbenzidine (TMB) method for studying neuronal connections at the electron microscopic level is often difficult because the conditions of osmification and dehydration used in processing the tissue may result in significant loss and/or decreased electron density of the reaction product. In the present study, we report that stabilization of TMB reaction product with 5% ammonium molybdate (AM) prior to osmificating the tissue results in the formation of TMB-AM crystals that are many times more electron dense and resistant to ethanol extraction than non-stabilized TMB crystals. The nature of the chemical interaction that underlies the stabilization of TMB by AM is uncertain, but it may involve the formation of an insoluble salt between molybdic ions and the TMB polymer. The use of this simple procedure increases the sensitivity of the TMB procedure at the electron microscopic level and may be used to label neuronal pathways in the peripheral and central nervous systems with equal success.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27115/1/0000107.pd

    Atypical cellular elements of unknown origin in the subbasal nerve plexus of a diabetic cornea diagnosed by large-area confocal laser scanning microscopy

    Get PDF
    In vivo large-area confocal laser scanning microscopy (CLSM) of the human eye using EyeGuidance technology allows a large-scale morphometric assessment of the corneal subbasal nerve plexus (SNP). Here, the SNP of a patient suffering from diabetes and associated late complications was analyzed. The SNP contained multiple clusters of large hyperintense, stellate-shaped, cellular-like structures. Comparable structures were not observed in control corneas from healthy volunteers. Two hypotheses regarding the origin of these atypical structures are proposed. First, these structures might be keratocyte-derived myofibroblasts that entered the epithelium from the underlying stroma through breaks in Bowman’s layer. Second, these structures could be proliferating Schwann cells that entered the epithelium in association with subbasal nerves. The nature and pathophysiological significance of these atypical cellular structures, and whether they are a direct consequence of the patient’s diabetic neuropathy/or a non-specific secondary effect of associated inflammatory processes, are unknown

    Assessment of dynamic corneal nerve changes using static landmarks by in vivo large-area confocal microscopy—a longitudinal proof-of-concept study

    Get PDF
    Background: The purpose of the present proof-of-concept study was to use large-area in vivo confocal laser scanning microscopy (CLSM) mosaics to determine the migration rates of nerve branching points in the human corneal subbasal nerve plexus (SNP). Methods: Three healthy individuals were examined roughly weekly over a total period of six weeks by large-area in vivo confocal microscopy of the central cornea. An in-house developed prototype system for guided eye movement with an acquisition time of 40 s was used to image and generate large-area mosaics of the SNP. Kobayashi-structures and nerve entry points (EPs) were used as fixed structures to enable precise mosaic registration over time. The migration rate of 10 prominent nerve fiber branching points per participant was tracked and quantified over the longitudinal period. Results: Total investigation times of 10 minutes maximum per participant were used to generate mosaic images with an average size of 3.61 mm2 (range: 3.18–4.42 mm2). Overall mean branching point migration rates of (46.4±14.3), (48.8±15.5), and (50.9±13.9) µm/week were found for the three participants with no statistically significant difference. Longitudinal analyses of nerve branching point migration over time revealed significant time-dependent changes in migration rate only in participant 3 between the last two measurements [(63.7±12.3) and (43.0±12.5) µm/week, P<0.01]. Considering individual branching point dynamics, significant differences in nerve migration rate from the mean were only found in a few exceptions. Conclusions: The results of this proof-of-concept study have demonstrated the feasibility of using in vivo confocal microscopy to study the migration rates of corneal subbasal nerves within large areas of the central human cornea (>1 mm2). The ability to monitor dynamic changes in the SNP opens a window to future studies of corneal nerve health and regenerative capacity in a number of systemic and ocular diseases. Since corneal nerves are considered part of the peripheral nervous system, this technique could also offer an objective diagnostic tool and biomarker for disease- or treatment-induced neuropathic changes

    Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity

    No full text
    PURPOSE: In an effort to elucidate possible neural mechanisms underlying diminished tearing in dry eye disease, this study sought to determine if hyperosmolar tears, a ubiquitous sign of dry eye disease, produce functional changes in corneal nerve responses to drying of the cornea and if these changes correlate with alterations in corneal nerve morphology. METHODS: In vivo extracellular electrophysiological recordings were performed in rat trigeminal ganglion neurons that innervated the cornea before, and up to 3 hours after, the ocular application of continuous hyperosmolar tears or artificial tears. In corollary experiments, immunohistochemical staining was performed to compare corneal nerve morphology in control and in eyes treated with hyperosmolar solutions. RESULTS: Our previous studies identified a population of corneal afferents, dry-sensitive neurons that are strongly excited by corneal dessication (“dry response”), a response thought to trigger the lacrimation reflex. In the present study, we found that the dry responses of corneal dry-sensitive neurons were depressed or even completely abolished by hyperosmolar tears in a time- (30 minutes to 3 hours) and dose (450- to 1000-mOsm solutions)-dependent manner. Furthermore, eyes treated with hyperosmolar tears for 3 hours contained large numbers of morphologically abnormal (granular, fragmented, or prominently beaded) subbasal nerves that appeared to be undergoing degeneration. CONCLUSIONS: These results demonstrate that tear hyperosmolarity, considered to be a “core” mechanism of dry eye disease, significantly decreases physiological sensitivity and morphologic integrity of the corneal nerves important in tear production. These alterations might contribute to the diminished tearing seen clinically in dry eye patients

    Spontaneous chronic corneal epithelial defects (SCCED) in dogs: clinical features, innervation, and effect of topical SP, with or without IGF-1

    No full text
    Purpose - To delineate the clinical features and alterations in innervation and substance P (SP) content in spontaneous chronic corneal epithelial defects (SCCED) in dogs and to conduct a preliminary investigation evaluating the efficacy of topical SP, with or without insulin-like growth factor (IGF)-1, in the treatment of this disorder. Methods - Complete ophthalmic examinations, including Cochet-Bonnet aesthesiometry, were performed in 45 canine patients that had spontaneous corneal epithelial defects of at least 3 weeks' duration and with no identifiable cause. Eighteen patients had superficial keratectomies performed, and the corneal nerves were labeled immunohistochemically with antibodies against protein gene product (PGP)-9.5, SP, vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH). Relative fiber densities were assessed qualitatively and quantitatively. Corneal epithelial cell and tear SP contents were determined in affected and normal dogs by an enzyme immunoassay. A preliminary open-label treatment trial of topical SP, with and without IGF-1, was conducted in 21 dogs. Results - The duration of the erosion before admittance into the study was a mean of 9.22 weeks (range, 3-52). The average patient was middle aged (mean, 9.25 +/- 1.85 years [SD]); no sex predisposition of the disease was identified. Boxers, golden retrievers, and keeshonds were overrepresented when compared with the normal hospital population. Corneal sensation was normal. Marked alterations in corneal innervation were identified in affected dogs with abnormal increased SP and calcitonin gene-related peptide (CGRP)-immunoreactive nerve plexuses identified surrounding the periphery of the epithelial defect. The SP content of epithelial cells surrounding the defect increased, whereas the tear SP content remained unchanged. Of the canine patients treated with SP, with or without IGF-1, 70% to 75% had complete healing of the defect. Conclusions - This idiopathic spontaneous corneal disease in dogs shares clinical features with chronic epithelial defects in humans. The presence of marked alterations in peptidergic innervation and positive response to topical therapy with SP suggest that SP plays a critical role in corneal wound-healing processes

    The TFOS International Workshop on Contact Lens Discomfort: Report of the Subcommittee on Neurobiology

    Get PDF
    This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens-related discomfort. While there is limited evidence for the mechanisms involved in contact lens-related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea

    Loss of Corneal Sensory Nerve Fibers in SIV-Infected Macaques: An Alternate Approach to Investigate HIV-Induced PNS Damage

    Get PDF
    Peripheral neuropathy is the most frequent neurological complication of HIV infection, affecting more than one-third of infected patients, including patients treated with antiretroviral therapy. Although emerging noninvasive techniques for corneal nerve assessments are increasingly being used to diagnose and monitor peripheral neuropathies, corneal nerve alterations have not been characterized in HIV. Here, to determine whether SIV infection leads to corneal nerve fiber loss, we immunostained corneas for the nerve fiber marker βIII tubulin. We developed and applied both manual and automated methods to measure nerves in the corneal subbasal plexus. These counting methods independently indicated significantly lower subbasal corneal nerve fiber density among SIV-infected animals that rapidly progressed to AIDS compared with slow progressors. Concomitant with decreased corneal nerve fiber density, rapid progressors had increased levels of SIV RNA and CD68-positive macrophages and expression of glial fibrillary acidic protein by glial satellite cells in the trigeminal ganglia, the location of the neuronal cell bodies of corneal sensory nerve fibers. In addition, corneal nerve fiber density was directly correlated with epidermal nerve fiber length. These findings indicate that corneal nerve assessment has great potential to diagnose and monitor HIV-induced peripheral neuropathy and to set the stage for introducing noninvasive techniques to measure corneal nerve fiber density in HIV clinical settings
    corecore