134 research outputs found
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
Presumed Symbolic Use of Diurnal Raptors by Neanderthals
In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈100–60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60–40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions
Dating the Origin of Language Using Phonemic Diversity
Language is a key adaptation of our species, yet we do not know when it evolved. Here, we use data on language phonemic diversity to estimate a minimum date for the origin of language. We take advantage of the fact that phonemic diversity evolves slowly and use it as a clock to calculate how long the oldest African languages would have to have been around in order to accumulate the number of phonemes they possess today. We use a natural experiment, the colonization of Southeast Asia and Andaman Islands, to estimate the rate at which phonemic diversity increases through time. Using this rate, we estimate that present-day languages date back to the Middle Stone Age in Africa. Our analysis is consistent with the archaeological evidence suggesting that complex human behavior evolved during the Middle Stone Age in Africa, and does not support the view that language is a recent adaptation that has sparked the dispersal of humans out of Africa. While some of our assumptions require testing and our results rely at present on a single case-study, our analysis constitutes the first estimate of when language evolved that is directly based on linguistic data
Shell we cook it? An experimental approach to the microarchaeological record of shellfish roasting
In this paper, we investigate the microarchaeological traces and archaeological visibility of shellfish cooking activities through a series of experimental procedures with direct roasting using wood-fueled fires and controlled heating in a muffle furnace. An interdisciplinary geoarchacological approach, combining micromorphology, FTIR (in transmission and ATR collection modes), TGA and XRD, was used to establish a baseline on the mineralogical transformation of heated shells from aragonite to calcite and diagnostic sedimentary traces produced by roasting fire features. Our experimental design focused on three main types of roasting procedures: the construction of shallow depressions with heated rocks (pebble cuvette experiments), placing shellfish on top of hot embers and ashes (fire below experiment), and by kindling short-lived fires on top of shellfish (fire above experiments). Our results suggest that similar shellfish roasting procedures will largely create microstratigraphic signatures of anthropogenically reworked combusted material spatially "disconnected" from the actual combustion locus. The construction of shallow earth ovens might entail an increased archaeological visibility, and some diagnostic signatures of in situ hearths can be obtained by fire below roasting activities. We also show that macroscopic visual modifications and mineralogical characterization of discarded shellfish might be indicative of specific cooking activities versus secondary burning.Max Planck Societyinfo:eu-repo/semantics/publishedVersio
Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
Evolution of Skull and Mandible Shape in Cats (Carnivora: Felidae)
The felid family consists of two major subgroups, the sabretoothed and the feline cats, to which all extant species belong, and are the most anatomically derived of all carnivores for predation on large prey with a precision killing bite. There has been much controversy and uncertainty about why the skulls and mandibles of sabretoothed and feline cats evolved to become so anatomically divergent, but previous models have focused on single characters and no unifying hypothesis of evolutionary shape changes has been formulated. Here I show that the shape of the skull and mandible in derived sabrecats occupy entirely different positions within overall morphospace from feline cats, and that the evolution of skull and mandible shape has followed very different paths in the two subgroups. When normalised for body-size differences, evolution of bite forces differ markedly in the two groups, and are much lower in derived sabrecats, and they show a significant relationship with size and cranial shape, whereas no such relationship is present in feline cats. Evolution of skull and mandible shape in modern cats has been governed by the need for uniform powerful biting irrespective of body size, whereas in sabrecats, shape evolution was governed by selective pressures for efficient predation with hypertrophied upper canines at high gape angles, and bite forces were secondary and became progressively weaker during sabrecat evolution. The current study emphasises combinations of new techniques for morphological shape analysis and biomechanical studies to formulate evolutionary hypotheses for difficult groups
Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers
International audienceThe exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around * 100 ka BP) of El Har-houra 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption
Small Scattered Fragments Do Not a Dwarf Make: Biological and Archaeological Data Indicate that Prehistoric Inhabitants of Palau Were Normal Sized
Current archaeological evidence from Palau in western Micronesia indicates that the archipelago was settled around 3000–3300 BP by normal sized populations; contrary to recent claims, they did not succumb to insular dwarfism
The evolution of the upright posture and gait—a review and a new synthesis
During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories
Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function
BACKGROUND: Recent findings suggest that the North African Middle Stone Age technocomplex known as the Aterian is both much older than previously assumed, and certainly associated with fossils exhibiting anatomically modern human morphology and behavior. The Aterian is defined by the presence of 'tanged' or 'stemmed' tools, which have been widely assumed to be among the earliest projectile weapon tips. The present study systematically investigates morphological variation in a large sample of Aterian tools to test the hypothesis that these tools were hafted and/or used as projectile weapons. METHODOLOGY/PRINCIPAL FINDINGS: Both classical morphometrics and Elliptical Fourier Analysis of tool outlines are used to show that the shape variation in the sample exhibits size-dependent patterns consistent with a reduction of the tools from the tip down, with the tang remaining intact. Additionally, the process of reduction led to increasing side-to-side asymmetries as the tools got smaller. Finally, a comparison of shape-change trajectories between Aterian tools and Late Paleolithic arrowheads from the North German site of Stellmoor reveal significant differences in terms of the amount and location of the variation. CONCLUSIONS/SIGNIFICANCE: The patterns of size-dependent shape variation strongly support the functional hypothesis of Aterian tools as hafted knives or scrapers with alternating active edges, rather than as weapon tips. Nevertheless, the same morphological patterns are interpreted as one of the earliest evidences for a hafting modification, and for the successful combination of different raw materials (haft and stone tip) into one implement, in itself an important achievement in the evolution of hominin technologies
- …