840 research outputs found

    Public perceptions of expert disagreement: Bias and incompetence or a complex and random world?

    Get PDF
    30 page PDFExpert disputes can present laypeople with several challenges including trying to understand why such disputes occur. In an online survey of the U.S. public, we used a psychometric approach to elicit perceptions of expert disputes for 56 forecasts sampled from seven domains (climate change, crime, economics, environment, health, politics, terrorism). People with low education, or with low self-reported knowledge of the topic, were most likely to attribute expert disputes to expert incompetence. People with higher self-reported knowledge tended to attribute disputes to expert bias due to financial or ideological reasons. The more highly educated and cognitively able were most likely to attribute disputes to natural factors, such as the irreducible complexity and randomness of the phenomenon. We highlight several important implications of these results for scientists and risk managers and argue for further research on how people perceive and grapple with expert disputes.We would like to acknowledge the generous support of the National Science Foundation: This material is based upon work supported by NSF under Grant Nos. #1231231 (Robin Gregory, PI; Nathan Dieckmann co-PI) and #0925008 (Nathan Dieckmann, PI) to Decision Research. All views expressed in this paper are those of the authors alone

    Xyloglucan is released by plants and promotes soil particle aggregation.

    Get PDF
    Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land

    Cognitive and behavioral predictors of light therapy use

    Get PDF
    Objective: Although light therapy is effective in the treatment of seasonal affective disorder (SAD) and other mood disorders, only 53-79% of individuals with SAD meet remission criteria after light therapy. Perhaps more importantly, only 12-41% of individuals with SAD continue to use the treatment even after a previous winter of successful treatment. Method: Participants completed surveys regarding (1) social, cognitive, and behavioral variables used to evaluate treatment adherence for other health-related issues, expectations and credibility of light therapy, (2) a depression symptoms scale, and (3) self-reported light therapy use. Results: Individuals age 18 or older responded (n = 40), all reporting having been diagnosed with a mood disorder for which light therapy is indicated. Social support and self-efficacy scores were predictive of light therapy use (p's<.05). Conclusion: The findings suggest that testing social support and self-efficacy in a diagnosed patient population may identify factors related to the decision to use light therapy. Treatments that impact social support and self-efficacy may improve treatment response to light therapy in SAD. © 2012 Roecklein et al

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Prognostic factor from MR spectroscopy in rat with astrocytic tumour during radiation therapy

    Get PDF
    Objective: To investigate the relationship between the tumour volume and metabolic rates of astrocytic tumours using MR spectroscopy (MRS) during radiation therapy (RT). Methods: 12 healthy male Sprague-Dawley® rats (Sprague–Dawley Animal Company, Madison, WI) were used, and a tumour model was created through injecting C6 tumour cells into the right caudate nuclei of the rats. Tumours grew for 18 days after the injection and before the imaging study and radiation treatment. MRS was performed with two-dimensional multivoxel point-resolved spectroscopy sequence using a GE Signa VH/i 3.0-T MR scanner (GE Healthcare, Milwaukee, WI) equipped with rat-special coil. RT was given on the 19th day with a dose of 4 Gy in one single fraction. The image examinations were performed before RT, and on the 4th, 10th, 14th and 20th days after treatment, respectively. GE FuncTool software package (GE Healthcare) was used for post-processing of spectrum. Results: Metabolic ratios of serial MRS decrease progressively with time after RT. Choline-containing components (Cho)/creatine and creatine phosphate (Cr) ratios immediately prior to RT differed significantly from those on the 10th, 14th and 20th days after RT; both Cho/N-acetyl aspartate (NAA) ratios and NAA/Cr ratios immediately prior to RT differed significantly from those on the 14th and 20th days after RT. A positive correlation between changes of tumour volume and changes of Cho/Cr, lipid and lactate/Cr and glutamate plus glutamine/Cr ratio was observed on the 4th day after RT. Conclusion: MRS provides potential in monitoring tumour response during RT, and the imaging biomarkers predict the response of astrocytic tumours to treatment. Advances in knowledge: MRS is combined with both tumour size and Ki-67 labelling index to access tumour response to radiation.ECU Open Access Publishing Support Fun

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A &lt; AV &gt; V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
    corecore