89 research outputs found

    Functional Characterization of Circulating Tumor Cells with a Prostate-Cancer-Specific Microfluidic Device

    Get PDF
    Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45− cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents

    Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression

    Get PDF
    In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens

    Cortical Gyrification and Sulcal Spans in Early Stage Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition

    Decreases in Community Viral Load Are Accompanied by Reductions in New HIV Infections in San Francisco

    Get PDF
    BACKGROUND: At the individual level, higher HIV viral load predicts sexual transmission risk. We evaluated San Francisco's community viral load (CVL) as a population level marker of HIV transmission risk. We hypothesized that the decrease in CVL in San Francisco from 2004-2008, corresponding with increased rates of HIV testing, antiretroviral therapy (ART) coverage and effectiveness, and population-level virologic suppression, would be associated with a reduction in new HIV infections. METHODOLOGY/PRINCIPAL FINDINGS: We used San Francisco's HIV/AIDS surveillance system to examine the trends in CVL. Mean CVL was calculated as the mean of the most recent viral load of all reported HIV-positive individuals in a particular community. Total CVL was defined as the sum of the most recent viral loads of all HIV-positive individuals in a particular community. We used Poisson models with robust standard errors to assess the relationships between the mean and total CVL and the primary outcome: annual numbers of newly diagnosed HIV cases. Both mean and total CVL decreased from 2004-2008 and were accompanied by decreases in new HIV diagnoses from 798 (2004) to 434 (2008). The mean (p = 0.003) and total CVL (p = 0.002) were significantly associated with new HIV cases from 2004-2008. CONCLUSIONS/SIGNIFICANCE: Reductions in CVL are associated with decreased HIV infections. Results suggest that wide-scale ART could reduce HIV transmission at the population level. Because CVL is temporally upstream of new HIV infections, jurisdictions should consider adding CVL to routine HIV surveillance to track the epidemic, allocate resources, and to evaluate the effectiveness of HIV prevention and treatment efforts

    An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis

    Get PDF
    Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human β-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown., applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. outcome and demonstrates the importance of the innate immune system in the development of tumors

    The P2X1 receptor and platelet function

    Get PDF
    Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of αIIbβ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link
    corecore