6 research outputs found

    Using Focus Groups to Develop a Bone Health Curriculum for After-school Programs

    Get PDF
    INTRODUCTION: Childhood behaviors influence peak bone mass and osteoporosis risk in later life. The after-school environment provides an opportunity to enrich a child’s learning and experience. Our objective was to gain a better understanding of the knowledge of, attitudes and beliefs about, and barriers to achieving bone health among children, parents, and after-school program leaders from low-income, ethnically diverse communities. Findings led to the development, implementation, and evaluation of a bone health curriculum in the after-school setting. METHODS: Eight focus groups were conducted in three representative communities. Focus group participants included children aged six to eight years, parents of children aged six to eight, and after-school program staff. Transcripts and written notes from each session were reviewed and common themes were identified within each group. RESULTS: Most adults had some understanding of osteoporosis, but did not recognize that childhood behaviors had a role in developing the disease. Program leaders raised concerns about their ability to implement a health program and recommended a flexible format. Parents and program leaders recognized the importance of maintaining a fun atmosphere. CONCLUSION: It is feasible to create a curriculum for a bone health program that meets the unique needs and interests of children and program leaders in the after-school setting. Addressing the needs, interests, and common barriers of the target population is an essential first step in curriculum development

    13Th International Conference On Conservative Management Of Spinal Deformities And First Joint Meeting Of The International Research Society On Spinal Deformities And The Society On Scoliosis Orthopaedic And Rehabilitation Treatment – Sosort-Irssd 2016 Meeting

    No full text
    PubMe

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore