10 research outputs found

    WUVS Simulator: Detectability of spectral lines with the WSO-UV spectrographs

    Get PDF
    The World Space Observatory - Ultraviolet (WSO-UV) space telescope is equipped with high dispersion (55,000) spectrographs working in the 1150-3100 {\AA} spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission, and it is designed to generate synthetic time-series of images by including models of all important noise sources. In this article, we describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.Comment: 8 pages, 5 figure

    Ensemble Asteroseismology of the Young Open Cluster NGC 2244

    Full text link
    Our goal is to perform in-depth ensemble asteroseismology of the young open cluster NGC2244 with the 2-wheel Kepler mission. While the nominal Kepler mission already implied a revolution in stellar physics for solar-type stars and red giants, it was not possible to perform asteroseismic studies of massive OB stars because such targets were carefully avoided in the FoV in order not to disturb the exoplanet hunting. Now is an excellent time to fill this hole in mission capacity and to focus on the metal factories of the Universe, for which stellar evolution theory is least adequate. Our white paper aims to remedy major shortcomings in the theory of stellar structure and evolution of the most massive stars by focusing on a large ensemble of stars in a carefully selected young open cluster. Cluster asteroseismology of very young stars such as those of NGC2244 has the major advantage that all cluster stars have similar age, distance and initial chemical composition, implying drastic restrictions for the stellar modeling compared to asteroseismology of single isolated stars with very different ages and metallicities. Our study requires long-term photometric measurements of stars with visual magnitude ranging from 6.5 to 15 in a large FoV with a precision better than 30 ppm for the brightest cluster members (magnitude below 9) up to 500 ppm for the fainter ones, which is well achievable with 2-Wheel Kepler, in combination with high-precision high-resolution spectroscopy and spectro-polarimetry of the brightest pulsating cluster members. These ground-based spectroscopic data will be assembled with the HERMES and CORALIE spectrographs (twin 1.2m Mercator and Euler telescopes, La Palma, Canary Islands and La Silla, Chile), as well as with the spectro-polarimetric NARVAL instrument (2m BLT at the Pic du Midi, French Pyrenees), to which we have guaranteed access.Comment: 10 pages, 3 figures, white paper submitted in response to the NASA call for community input for science investigations the Kepler 2-Wheel spacecraf

    Simulations and software algorithms for space missions. Developing an astronomical multi-mission instrument simulator

    No full text
    I. Study of data reduction and analysis of ACS/HST in UV line and continuum data for low-mass accreting T Tauri stars.II. Definition and implementation of a global software simulation package to assess and evaluate the performances of various detectors (CCD, CMOS,...) for high-precision measurements of various types of stars, applicable to both space and ground-based instrumentation. Application of this tool to the science detectors of the ESA M3 selected mission PLATO.status: publishe

    ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness

    No full text
    Only a low percentage of the radiation from our Sun is captured by photosynthesis, but this conversion of solar to chemical energy sustains all life on Earth. Photosynthesis could be present in any exoplanetary system fulfilling the main three ingredients for this metabolic route: light, water, and carbon dioxide. To deepen into this idea, the ExoPhot project aims to study the relation between photosynthetic systems and exoplanet conditions around different types of stars by focusing on two aspects: (i) Assessing the photosynthetic fitness of a variety of photopigments (either found on Earth or theoretical) as a function of stellar spectral type, star-exoplanet separation, and planet atmosphere basic parameters, and (ii) delineating a range of stellar, exoplanet, and atmospheric parameters for which photosynthetic activity might be feasible. In order to address these goals, we make use of a new metric, the absorption rate γ, for the evaluation of the exoplanet photosynthetic activity that, based on state-of-the-art planet atmosphere and stellar photosphere spectroscopic models, quantifies the overlap between those models with the absorption spectra of photosynthetic pigments, both terrestrial and theoretical. We provide with a set of results for a combination of photosystems and exoplanetary environments revealing the importance of our metric when compared to previous photosynthesis indicators

    Ensemble Asteroseismology of the Young Open Cluster NGC 2244

    No full text
    Our goal is to perform in-depth ensemble asteroseismology of the young open cluster NGC2244 with the 2-wheel Kepler mission. While the nominal Kepler mission already implied a revolution in stellar physics for solar-type stars and red giants, it was not possible to perform asteroseismic studies of massive OB stars because such targets were carefully avoided in the FoV in order not to disturb the exoplanet hunting. Now is an excellent time to fill this hole in mission capacity and to focus on the metal factories of the Universe, for which stellar evolution theory is least adequate. Our white paper aims to remedy major shortcomings in the theory of stellar structure and evolution of the most massive stars by focusing on a large ensemble of stars in a carefully selected young open cluster. Cluster asteroseismology of very young stars such as those of NGC2244 has the major advantage that all cluster stars have similar age, distance and initial chemical composition, implying drastic restrictions for the stellar modeling compared to asteroseismology of single isolated stars with very different ages and metallicities. Our study requires long-term photometric measurements of stars with visual magnitude ranging from 6.5 to 15 in a large FoV with a precision better than 30 ppm for the brightest cluster members (magnitude below 9) up to 500 ppm for the fainter ones, which is well achievable with 2-Wheel Kepler, in combination with high-precision high-resolution spectroscopy and spectro-polarimetry of the brightest pulsating cluster members. These ground-based spectroscopic data will be assembled with the HERMES and CORALIE spectrographs (twin 1.2m Mercator and Euler telescopes, La Palma, Canary Islands and La Silla, Chile), as well as with the spectro-polarimetric NARVAL instrument (2m BLT at the Pic du Midi, French Pyrenees), to which we have guaranteed access.nrpages: 10status: publishe

    Ensemble Asteroseismology of the Young Open Cluster NGC 2244

    No full text
    10 pages, 3 figures, white paper submitted in response to the NASA call for community input for science investigations the Kepler 2-Wheel spacecraftOur goal is to perform in-depth ensemble asteroseismology of the young open cluster NGC2244 with the 2-wheel Kepler mission. While the nominal Kepler mission already implied a revolution in stellar physics for solar-type stars and red giants, it was not possible to perform asteroseismic studies of massive OB stars because such targets were carefully avoided in the FoV in order not to disturb the exoplanet hunting. Now is an excellent time to fill this hole in mission capacity and to focus on the metal factories of the Universe, for which stellar evolution theory is least adequate. Our white paper aims to remedy major shortcomings in the theory of stellar structure and evolution of the most massive stars by focusing on a large ensemble of stars in a carefully selected young open cluster. Cluster asteroseismology of very young stars such as those of NGC2244 has the major advantage that all cluster stars have similar age, distance and initial chemical composition, implying drastic restrictions for the stellar modeling compared to asteroseismology of single isolated stars with very different ages and metallicities. Our study requires long-term photometric measurements of stars with visual magnitude ranging from 6.5 to 15 in a large FoV with a precision better than 30 ppm for the brightest cluster members (magnitude below 9) up to 500 ppm for the fainter ones, which is well achievable with 2-Wheel Kepler, in combination with high-precision high-resolution spectroscopy and spectro-polarimetry of the brightest pulsating cluster members. These ground-based spectroscopic data will be assembled with the HERMES and CORALIE spectrographs (twin 1.2m Mercator and Euler telescopes, La Palma, Canary Islands and La Silla, Chile), as well as with the spectro-polarimetric NARVAL instrument (2m BLT at the Pic du Midi, French Pyrenees), to which we have guaranteed access

    Detection of solar-like oscillations in the bright red giant stars γ Piscium and θ1 Tauri from a 190-day high-precision spectroscopic multi-site campaign

    Get PDF
    Context. Red giants are evolved stars that exhibit solar-like oscillations. Although a multitude of stars have been observed with space telescopes, only a handful of red giant stars were targets of spectroscopic asteroseismic observing projects. Aims: We search for solar-like oscillations in the two bright red giant stars γ Psc and θ1 Tau from a time series of ground-based spectroscopy and determine the frequency of the excess of oscillation power νmax and the mean large frequency separation Δν for both stars. Seismic constraints on the stellar mass and radius will provide robust input for stellar modelling. Methods: The radial velocities of γ Psc and θ1 Tau were monitored for 120 and 190 days, respectively. Nearly 9000 spectra were obtained. To reach accurate radial velocities, we used simultaneous thorium-argon and iodine-cell calibration of our optical spectra. In addition to the spectroscopy, we acquired interferometric observations of γ Psc for an independent estimate of the radius. We also analysed 22 days of observations of θ1 Tau with the MOST satellite. Results: The frequency analysis of the radial velocity data of γ Psc revealed an excess of oscillation power around 32 μHz and a large frequency separation of 4.1 ± 0.1 μHz. θ1 Tau exhibits oscillation power around 90 μHz, with a large frequency separation of 6.9 ± 0.2 μHz. Scaling relations indicate that γ Psc is a star of about 1 M⊙ and 10 R⊙. The object θ1 Tau appears to be a massive star of about 2.7 M⊙ and 10 R⊙. The radial velocities of both stars were found to be modulated on timescales much longer than the oscillation periods. Conclusions: The estimated radii from seismology are in agreement with interferometric observations and also with estimates based on photometric data. While the mass of θ1 Tau is in agreement with results from dynamical parallaxes, we find a lower mass for γ Psc than is found in the literature. The long periodic variability agrees with the expected timescales of rotational modulation. Based on observations made with the HERMES spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias; the CORALIE spectrograph mounted on the 1.2 m Swiss telescope at La Silla Observatory, the HIDES spectrograph, mounted on the 1.9 m telescope at Okayama Astrophysical Observatory, NAOJ, the MOST space telescope, and and observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 086.D-0101.15 pages, 15 figures; accepted for publication in A&Astatus: publishe

    Streptococcus Pneumoniae Translocates into the Myocardium and Forms Unique Microlesions that Disrupt Cardiac Function

    Get PDF
    Hospitalization of the elderly for invasive pneumococcal disease is frequently accompanied by the occurrence of an adverse cardiac event; these are primarily new or worsened heart failure and cardiac arrhythmia. Herein, we describe previously unrecognized microscopic lesions (microlesions) formed within the myocardium of mice, rhesus macaques, and humans during bacteremic Streptococcus pneumoniae infection. In mice, invasive pneumococcal disease (IPD) severity correlated with levels of serum troponin, a marker for cardiac damage, the development of aberrant cardiac electrophysiology, and the number and size of cardiac microlesions. Microlesions were prominent in the ventricles, vacuolar in appearance with extracellular pneumococci, and remarkable due to the absence of infiltrating immune cells. The pore-forming toxin pneumolysin was required for microlesion formation but Interleukin-1β was not detected at the microlesion site ruling out pneumolysin-mediated pyroptosis as a cause of cell death. Antibiotic treatment resulted in maturing of the lesions over one week with robust immune cell infiltration and collagen deposition suggestive of long-term cardiac scarring. Bacterial translocation into the heart tissue required the pneumococcal adhesin CbpA and the host ligands Laminin receptor (LR) and Platelet-activating factor receptor. Immunization of mice with a fusion construct of CbpA or the LR binding domain of CbpA with the pneumolysin toxoid L460D protected against microlesion formation. We conclude that microlesion formation may contribute to the acute and long-term adverse cardiac events seen in humans with IPD

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text
    corecore