351 research outputs found

    La adición de diseleniuro de difenilo en las dietas de codorniz mejora la calidad de la carne

    Get PDF
    Objetivo. El diseleniuro de difenilo (Ph2Se2) es un compuesto de selenio orgánico que es conocido por sus características antioxidantes. Por lo tanto, el objetivo de este estudio fue evaluar si Ph2Se2 en las dietas de codorniz (Coturnix japonica) influye en el estado oxidativo/antioxidante y la calidad de la carne. Materiales y métodos. Se proporcionaron cuatro dietas (0; 0.3; 0.6; 0.9 ppm Ph2Se2) a 56 codornices machos (Coturnix japonica) distribuidas en un diseño completamente aleatorizado con 14 repeticiones para verificar si Ph2Se2 cambiaría su sangre y tejido oxidativo/antioxidante, estado, lo que llevaría a una mejora en la calidad de la carne. Resultados. La adición de Ph2Se2 en las dietas provocó un aumento de la actividad antioxidante de enzimas como la catalasa, la superóxido dismutasa y la glutatión peroxidasa, lo que redujo los niveles de oxidación en la sangre y los tejidos. Además de eso, observamos una mejora en la calidad de la carne de codorniz; en otras palabras, observamos una mayor capacidad para retener agua, una reducción en la pérdida de agua debido a la cocción y una menor intensidad del color amarillo en las mamas de las aves que fueron alimentadas con Ph2Se2. Conclusiones. Por lo tanto, concluimos que la mejora de la defensa antioxidante en los tejidos proporcionada por Ph2Se2 tiene un efecto beneficioso sobre la calidad de la carne

    CUBES : the Cassegrain U-band Efficient Spectrograph

    Get PDF
    In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (> 40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R >20, 000 (with a lower-resolution, sky-limited mode of R ~7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028

    Oregano essential oil (Origanum vulgare) to feed laying hens and its effects on animal health

    No full text
    Abstract Abstract: This study evaluated the effect of oregano essential oil added to the feed of commercial laying hens. This research was focused on the analysis of biochemical changes linked to hepatic function, and protein and lipid metabolism. It was used 240 laying hens (59 weeks-old) distributed in a completely randomized design of six treatments (five repetitions with eight birds each). The experiments were constituted by a control treatment (CT) with the inclusion of zinc bacitracin and five treatments of oregano essential oil (OEO: 0, 50, 100, 150, and 200 mg.kg-1), respectively. After 28 days of feeding, an increase on serum levels of total proteins and globulins was observed on groups T150 and T200, as well as an increase on albumin levels on group CT. After 84 days of feeding, a significant reduction on total proteins and albumin was observed on group T200, as well as an increase in serum triglycerides. OEO at 200 mg.kg-1 increased globulin levels on day 28, which may be considered an effect in the inflammatory response, which increases serum immunoglobulins and proteins

    CUBES, the Cassegrain U-Band Efficient Spectrograph

    Get PDF
    In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000 (with a lower-resolution, sky-limited mode of R ~ 7,000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028

    Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the eμ\mu final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an e±μ^{\pm}\mu^{\mp} pair is presented. The search is performed with a proton-proton collision data set at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. No excess is observed for the Higgs boson. The observed (expected) upper limit on the e±μ^{\pm}\mu^{\mp} branching fraction for it is determined to be 4.4 (4.7) ×\times 105^{-5} at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an e±μ^{\pm}\mu^{\mp} invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations

    Search for a high-mass dimuon resonance produced in association with b quark jets at s\sqrt{s}=13 TeV

    No full text
    International audienceA search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb1^{-1} at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z' boson couplings to a bb quark pair (gbg_\mathrm{b}), an sb quark pair (gbδbsg_\mathrm{b}\delta_\mathrm{bs}), and any same-flavor charged lepton (gg_\ell) or neutrino pair (gνg_\nu), with gν=g\left|g_{\nu}\right|=\left|g_\ell\right|. For a Z' boson with a mass mZm_{\mathrm{Z}'} = 350 GeV (2 TeV) and δbs<\left|\delta_\mathrm{bs}\right| \lt 0.25, the majority of the parameter space with 0.0057 <g<\lt \left|g_\ell\right| \lt 0.35 (0.25 <g<\lt \left|g_\ell\right| \lt 0.43) and 0.0079 <gb<\lt \left|g_\mathrm{b}\right| \lt 0.46 (0.34 <gb<\lt \left|g_\mathrm{b}\right| \lt 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z' model with parameters consistent with low-energy b \to s\ell\ell measurements. In this scenario, most of the allowed parameter space is excluded for a Z' boson with 350 <mZ<\lt m_{\mathrm{Z}'}\lt 500 GeV, while the constraints are less stringent for higher mZm_{\mathrm{Z}'} hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date

    Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    No full text
    International audienceA search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb1^{-1}, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Observation of the rare decay of the η\eta meson to four muons

    No full text
    A search for the rare η\eta\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb1^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the \emm decay as normalization, the branching fraction B(\mathcal{B}(ημ+μμ+μ) \to \mu^+\mu^-\mu^+\mu^-) = ( 5.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.7 B2μ\mathcal{B}_{2\mu} ) ×\times 109^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This is the first measurement of this branching fraction and is found to be in agreement with theoretical predictions
    corecore