116 research outputs found

    Pyrethroid Resistance Reduces the Efficacy of Space Sprays for Dengue Control on the Island of Martinique (Caribbean)

    Get PDF
    The mosquito Aedes aegypti is the major vector of the Dengue virus in human populations and is responsible of serious outbreaks worldwide. In most countries, vector control is implemented by the use of insecticides to reduce mosquito populations. During epidemics, insecticides of the pyrethroid family (blocking the voltage gated sodium channel protein in the nerve sheath) are used by space spraying with vehicle mounted thermal foggers to kill adult mosquitoes. Unfortunately some populations of Ae. aegypti have become resistant to these insecticides, leading to operational challenges for public health services. In Martinique (French West Indies), resistance to pyrethroids was detected in the 1990s. The present study assessed the impact of this resistance on the efficacy of vector control operations in 9 localities of Martinique. Here we showed that the resistance strongly reduces the efficacy of pyrethroid-based treatments, thus emphasizing the urgent need for alternative insecticides or tools to reduce dengue transmission

    Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    Get PDF
    BACKGROUND:Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS:We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE:This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence

    Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti

    Get PDF
    Dengue is the most rapidly spreading arboviral infection of humans and each year there are 50–100 million cases of dengue fever. There is no vaccine or drug to prevent dengue infection so control of the mosquitoes that transmit this virus is the only option to reduce transmission. Removing mosquito habitats close to human homes can be effective but in reality most dengue control programmes rely on a small number of chemical insecticides. Therefore, when the mosquito vectors develop resistance to the available insecticides, dengue control is jeopardized. In this study we examined the causes of resistance to the insecticide class most commonly used in mosquito control, the pyrethroids. We found that a group of genes, which have been implicated in detoxifying these insecticides in other populations of dengue vectors, were highly over expressed in both these Caribbean populations and we investigated the molecular basis of this increased expression. The next steps, which will be a considerable challenge, are to utilize this information to develop effective means of restoring insecticide susceptibility in dengue vectors

    Over-Expression of a Cytochrome P450 Is Associated with Resistance to Pyriproxyfen in the Greenhouse Whitefly Trialeurodes vaporariorum

    Get PDF
    Copyright: 2012 Karatolos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are poorly understood. Results: Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel. Conclusion: Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.Peer reviewedFinal Published versio

    Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus

    Get PDF
    Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63–3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p 8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes

    Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Get PDF
    Background:Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar.Methodology/Principal Findings:We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study.Conclusions/Significance:Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti
    corecore