147 research outputs found

    A high throughput Intrusion Detection System (IDS) to enhance the security of data transmission among research centers

    Full text link
    Data breaches and cyberattacks represent a severe problem in higher education institutions and universities that can result in illegal access to sensitive information and data loss. To enhance the security of data transmission, Intrusion Prevention Systems (IPS, i.e., firewalls) and Intrusion Detection Systems (IDS, i.e., packet sniffers) are used to detect potential threats in the exchanged data. IPSs and IDSs are usually designed as software programs running on a server machine. However, when the speed of exchanged data is too high, this solution can become unreliable. In this case, IPSs and IDSs designed on a real hardware platform, such as ASICs and FPGAs, represent a more reliable solution. This paper presents a packet sniffer that was designed using a commercial FPGA development board. The system can support a data throughput of 10 Gbit/s with preliminary results showing that the speed of data transmission can be reliably extended to 100 Gbit/s. The designed system is highly configurable by the user and can enhance the data protection of information transmitted using the Ethernet protocol. It is particularly suited for the security of universities and research centers, where point-to-point network connections are dominant and large amount of sensitive data are shared among different hosts.Comment: 10 pages, 10 figures, 16th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD23), 25-29 September 2023, Siena, Ital

    Insider Threats in Emerging Mobility-as-a-Service Scenarios

    Get PDF
    Mobility as a Service (MaaS) applies the everything-as- \ a-service paradigm of Cloud Computing to transportation: a MaaS \ provider offers to its users the dynamic composition of solutions of \ different travel agencies into a single, consistent interface. \ Traditionally, transits and data on mobility belong to a scattered \ plethora of operators. Thus, we argue that the economic model of \ MaaS is that of federations of providers, each trading its resources to \ coordinate multi-modal solutions for mobility. Such flexibility comes \ with many security and privacy concerns, of which insider threat is \ one of the most prominent. In this paper, we follow a tiered structure \ — from individual operators to markets of federated MaaS providers \ — to classify the potential threats of each tier and propose the \ appropriate countermeasures, in an effort to mitigate the problems

    Privacy-Preserving Design of Data Processing Systems in the Public Transport Context

    Get PDF
    The public transport network of a region inhabited by more than 4 million people is run by a complex interplay of public and private actors. Large amounts of data are generated by travellers, buying and using various forms of tickets and passes. Analysing the data is of paramount importance for the governance and sustainability of the system. This manuscript reports the early results of the privacy analysis which is being undertaken as part of the analysis of the clearing process in the Emilia-Romagna region, in Italy, which will compute the compensations for tickets bought from one operator and used with another. In the manuscript it is shown by means of examples that the clearing data may be used to violate various privacy aspects regarding users, as well as (technically equivalent) trade secrets regarding operators. The ensuing discussion has a twofold goal. First, it shows that after researching possible existing solutions, both by reviewing the literature on general privacy-preserving techniques, and by analysing similar scenarios that are being discussed in various cities across the world, the former are found exhibiting structural effectiveness deficiencies, while the latter are found of limited applicability, typically involving less demanding requirements. Second, it traces a research path towards a more effective approach to privacy-preserving data management in the specific context of public transport, both by refinement of current sanitization techniques and by application of the privacy by design approach. Available at: https://aisel.aisnet.org/pajais/vol7/iss4/4

    Federated Platooning: Insider Threats and Mitigations

    Get PDF
    Platoon formation is a freight organization system where a group of vehicles follows a predefined trajectory maintaining a desired spatial pattern. Benefits of platooning include fuel savings, reduction of carbon dioxide emissions, and efficient allocation of road capacity. While traditionally platooning has been an exclusive option limited to specific geographical areas managed by a single operator, recent technological developments and EU initiatives are directed at the creation of an international, federated market for platooning, i.e., a consortium of platoon operators that collaborate and coordinate their users to constitute freights covering international routes. In this paper, we look at federated platooning from an insiders\u27 perspective. In our development, first we outline the basic elements of platooning and federation of platooning operators. Then, we provide a comprehensive analysis to identify the possible insiders (employees, users, operators, and federated members) and the threats they pose. Finally, we propose two layered, composable technical solutions to mitigate those threats: \emph{a}) a decentralized overlay network that regulates the interactions among the stakeholders, useful to mitigate issues linked to data safety and trustworthiness and \emph{b}) a dynamic federation platform, needed to monitor and interrupt deviant behaviors of federated members

    Time sensitive networking security: issues of precision time protocol and its implementation

    Get PDF
    Time Sensitive Networking (TSN) will be an integral component of industrial networking. Time synchronization in TSN is provided by the IEEE-1588, Precision Time Protocol (PTP) protocol. The standard, dating back to 2008, marginally addresses security aspects, notably not encompassing the frames designed for management purposes (Type Length Values or TLVs). In this work we show that the TLVs can be abused by an attacker to reconfigure, manipulate, or shut down time synchronization. The effects of such an attack can be serious, ranging from interruption of operations to actual unintended behavior of industrial devices, possibly resulting in physical damages or even harm to operators. The paper analyzes the root causes of this vulnerability, and provides concrete examples of attacks leveraging it to de-synchronize the clocks, showing that they can succeed with limited resources, realistically available to a malicious actor

    Data Flooding against Ransomware: Concepts and Implementations

    Get PDF
    Ransomware is one of the most infamous kinds of malware, particularly the “crypto” subclass, which encrypts users’ files, asking for some monetary ransom in exchange for the decryption key. Recently, crypto-ransomware grew into a scourge for enterprises and governmental institutions. The most recent and impactful cases include an oil company in the US, an international Danish shipping company, and many hospitals and health departments in Europe. Attacks result in production lockdowns, shipping delays, and even risks to human lives. To contrast ransomware attacks (crypto, in particular), we propose a family of solutions, called Data Flooding against Ransomware, tackling the main phases of detection, mitigation, and restoration, based on a mix of honeypots, resource contention, and moving target defence. These solutions hinge on detecting and contrasting the action of ransomware by flooding specific locations (e.g., the attack location, sensible folders, etc.) of the victim’s disk with files. Besides the abstract definition of this family of solutions, we present an open-source tool that implements the mitigation and restoration phases, called Ranflood. In particular, Ranflood supports three flooding strategies, apt for different attack scenarios. At its core, Ranflood buys time for the user to counteract the attack, e.g., to access an unresponsive, attacked server and shut it down manually. We benchmark the efficacy of Ranflood by performing a thorough evaluation over 6 crypto-ransomware (e.g., WannaCry, LockBit) for a total of 78 different attack scenarios, showing that Ranflood consistently lowers the amount of files lost to encryption

    A Service-Oriented Approach to Crowdsensing for Accessible Smart Mobility Scenarios

    Get PDF
    This work presents an architecture to help designing and deploying smart mobility applications. The proposed solution builds on the experience already matured by the authors in different fields: crowdsourcing and sensing done by users to gather data related to urban barriers and facilities, computation of personalized paths for users with special needs, and integration of open data provided by bus companies to identify the actual accessibility features and estimate the real arrival time of vehicles at stops. In terms of functionality, the first "monolithic" prototype fulfilled the goal of composing the aforementioned pieces of information to support citizens with reduced mobility (users with disabilities and/or elderly people) in their urban movements. In this paper, we describe a service-oriented architecture that exploits the microservices orchestration paradigm to enable the creation of new services and to make the management of the various data sources easier and more effective. The proposed platform exposes standardized interfaces to access data, implements common services to manage metadata associated with them, such as trustworthiness and provenance, and provides an orchestration language to create complex services, naturally mapping their internal workflow to code. The manuscript demonstrates the effectiveness of the approach by means of some case studies

    When Operation Technology Meets Information Technology: Challenges and Opportunities

    Get PDF
    Industry 4.0 has revolutionized process innovation while facilitating and encouraging many new possibilities. The objective of Industry 4.0 is the radical enhancement of productivity, a goal that presupposes the integration of Operational Technology (OT) networks with Information Technology (IT) networks, which were hitherto isolated. This disruptive approach is enabled by adopting several emerging technologies in Enterprise processes. In this manuscript, we discuss what we believe to be one of the main challenges preventing the full employment of Industry 4.0, namely, the integration of Operation Technology networking and Information Technology networking. We discuss the technical challenges alongside the potential tools while providing a state-of-the-art use case scenario. We showcase a possible solution based on the Asset Administration Shell approach, referring to the use case of camera synchronization for collaborative tasks
    • 

    corecore