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a b s t r a c t 

Ransomware is one of the most infamous kinds of malware, particularly the “crypto” subclass, which 

encrypts users’ files, asking for some monetary ransom in exchange for the decryption key. Recently, 

crypto-ransomware grew into a scourge for enterprises and governmental institutions. The most recent 

and impactful cases include an oil company in the US, an international Danish shipping company, and 

many hospitals and health departments in Europe. Attacks result in production lockdowns, shipping de- 

lays, and even risks to human lives. 

To contrast ransomware attacks (crypto, in particular), we propose a family of solutions, called Data 

Flooding against Ransomware, tackling the main phases of detection, mitigation, and restoration, based on 

a mix of honeypots, resource contention, and moving target defence. These solutions hinge on detecting 

and contrasting the action of ransomware by flooding specific locations (e.g., the attack location, sensible 

folders, etc.) of the victim’s disk with files. Besides the abstract definition of this family of solutions, we 

present an open-source tool that implements the mitigation and restoration phases, called Ranflood. 

In particular, Ranflood supports three flooding strategies, apt for different attack scenarios. At its core, 

Ranflood buys time for the user to counteract the attack, e.g., to access an unresponsive, attacked server 

and shut it down manually. We benchmark the efficacy of Ranflood by performing a thorough evaluation 

over 6 crypto-ransomware (e.g., WannaCry, LockBit) for a total of 78 different attack scenarios, showing 

that Ranflood consistently lowers the amount of files lost to encryption. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Liska and Gallo (2016) define ransomware as a “blanket term 

sed to describe a class of malware that is used to digitally extort 

ictims into payment of a specific fee”. 

A common kind of ransomware is of the crypto class, which 

olds hostage the files of the victim by encrypting them and then 

sking for a ransom for their decryption. 
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Background 

In the last 10 years, the advent of new technologies changed 

he approach of ransomware ( Greengard, 2021 ). Specifically, two 

nnovations represented the turning point for the latest genera- 

ion of ransomware: more efficient encryption mechanisms and the 

idespread adoption of cryptocurrencies. More efficient encryption 

ncreased ransomware dangerousness both thanks to algorithms’ 

peed, which shortened the useful timeframe that detectors have 

o trigger users and/or mitigations, and their strength, thwarting 

ny attempts at reversing the process without a key. Cryptocur- 

encies provided criminals with reliable means to monetise attacks 

nd protect their anonymity. 

Just considering the last 5 years, we saw attacks becoming more 

nd more frequent, with successful ones having strong side ef- 

ects in global logistics, markets, and healthcare. NotPetya , which 

eavily targeted Ukraine in 2017 (taking offline some Chernobyl 

uclear plant monitors ( Griffin, 2017 ) and ministries, banks, and 

etro systems ( Perlroth et al., 2017 )), impacted at the global scale 

y blocking the logistics operations (and, thus, the hubs shared 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ith other collaborators/competitors) of the Danish shipping com- 

any Maersk ( Chappell and Dwyer, 2017 ), among many others. 

he attack, in 2021, on the US Colonial Pipeline companies caused 

uel shortages in 5 states, leading to panic-buying, a surge in fuel 

rices, and fuelling disruptions ( Joe et al., 2021 ). Attackers did not 

pare the health sector, which, during the COVID-19 pandemic, 

as undergoing heavy pressures due to mass hospitalisation and 

he management of national vaccination campaigns. Attacks have 

een worldwide — the heaviest happening in Ireland ( Person and 

adraic Halpin, 2021 ) and Italy ( Abrams, 2021 ), similarly to the in-

amous WannaCry, which targeted in 2017 the UK healthcare sys- 

em ( Sheila A. and Tracy P., 2017 ) — and resulted in outages and

elays of vital medical procedures. 

Honeypot Techniques against Ransomware 

In this article, we focus on the usage of honeypot mecha- 

isms for contrasting ransomware, and we introduce an advanced 

oneypot modality, which overcomes the limitations of current 

oneypot-based solutions. 

In general, honeypots represent sacrificial resources that de- 

enders use to either detect and/or ward off malicious intrusions. 

he idea is to provide easy-to-access decoy resources that, once 

ccessed, expose the attacker and possibly slow it down. 

We dedicate Section 3.1 to discuss in detail the limitations of 

xisting honeypot techniques and Section 2 to provide a general 

eview of the existing proposals. Briefly, basic honeypot techniques 

etect ransomware by deploying honeypot nodes, e.g., in the same 

etwork as those of real users, that contain decoy data. Advanced 

echniques ( Al-rimy et al., 2018; Kok et al., 2019; Moore, 2016 ) 

mit using honeypot nodes and rather inject decoy files directly 

nto real systems (e.g., the computers of the users). While these 

olutions increase the available detection surface (essentially, they 

ake any node of a network a honeypot), they present problems 

inked to the pervasiveness of the honeypot files. For example, to 

over the entire attack surface of a node one would need decoy 

les in all possible folders of that node and keep track of actions 

n all those files ( Moore, 2016 ). 

Contribution 

To overcome the limitations of existing honeypot techniques, 

e present a family of solutions based on a mix of honeypots, re- 

ource contention , and moving target defence . The underlying prin- 

iple is that of flooding specific locations of the disk (e.g., the 

ttack location, user folders, etc.) with decoy files. Interestingly, 

ur technique extends the coverage of honeypot mechanisms to 

he three main phases of ransomware contrast: detection, mitiga- 

ion, and restoration. We call this new family of solutions Data 

ooding against Ransomware (DFaR). We dedicate Section 3 to 

ntroduce and discuss the concepts that characterise the DFaR 

pproach. 

Then, we put into practice our theory by introducing an open- 

ource tool, called Ranflood, which implements the mitigation and 

estoration phases of DFaR. 

At its core, Ranflood buys time for the user to counteract an 

ngoing attack, e.g., to access an unresponsive, attacked server and 

hut it down manually. In detail, Ranflood implements a dynamic 

oneypot approach, which consists in generating decoy files and 

onfusing the genuine files of the user with bait ones that the ran- 

omware is lured into encrypting (making it waste time on them 

ather than on the actual files of the user). This confusion con- 

titutes the moving-target-defence part of the approach. The third 

rong, that of resource contention, happens over IO access (e.g., for 

eading and writing on disk), which the ransomware must share 

ith the (IO-heavy) Ranflood flooding routines. 

The generation of (bait) files affords a wide design space span- 

ing different formats, structures, and contents. In this article, we 

resent three novel strategies, briefly introduced hereinafter and 

ully detailed in Section 4 : 
2 
• Random generates files of different sizes and formats (those 

mostly targeted by ransomware ( Lee et al., 2019 )) with random 

content. The strategy has no prerequisites besides the provision 

of a disk location to flood; 

• On-the-fly performs copy-based flooding using the actual files 

of the user. Besides requiring a target location, this strategy can 

entail a preliminary procedure (which shall run under ordinary 

situations, i.e., not during an attack) that collects lightweight 

file integrity information (e.g., checksum) of the user’s files. In 

principle, this preliminary part is optional, but we assume it 

since it can increase the effectiveness of the strategy by avoid- 

ing copying files that have already been encrypted by ran- 

somware; 

• Shadow is also a kind of copy-based flooding strategy. Besides 

the target location, Shadow entails a necessary preliminary pro- 

cedure that creates backups of the user’s files—usually heav- 

ier than the integrity information collected by the On-the-Fly 

strategy—which it uses as the source for the copies. This strat- 

egy trades disk occupancy for increased effectiveness compared 

to On-the-Fly, since all the files in a backup are available for 

the flooding routine. 

After presenting the general approach of Ranflood, its flooding 

trategies, and its software architecture in Section 4 , we dedicate 

ection 5 to present a thorough benchmark of the efficacy of Ran- 

ood and the efficiency of its different flooding strategies. To per- 

orm this task, we consider 6 pieces of crypto-ransomware and 

easure the loss rate of user files (due to encryption) first with- 

ut Ranflood and then using each of the three flooding strategies. 

ince the timeframe of execution can also be important, we sim- 

late four incremental delays in the triggering of Ranflood, after 

he start of the ransomware. This amounts to 78 different scenar- 

os. The results from Section 5 confirm our hypothesis: Ranflood 

onsistently lowers the number of files lost to encryption. 

While studying and investigating the approach we developed 

or Ranflood, we found interesting future research directions on 

etection, restoration, and on applications on kinds of ransomware 

ther than crypto ones. We report these along with our concluding 

emarks in Section 6 . 

. Related Work 

Before presenting the contributions of this article, we dis- 

uss related work on the existing techniques for contrasting ran- 

omware and relate these to our proposal. 

Tracing an overview of the literature on anti-ransomware tech- 

iques means dealing with two main branches. The first regards 

ork created specifically for a family of ransomware, while the 

econd—like the family of solutions presented here—is of general 

pplication. 

Within the first branch, we find mitigation techniques for 

he Cryptolocker ransomware. For example, Chew and Ku- 

ar (2019) presented a preventative technique based on altering 

ccess control levels of files and folders to revoke writing privileges 

uring an attack. Lee et al. (2018) proposed a different approach, 

gain targeting Cryptolocker, to recover from a ransomware attack 

y intercepting the decryption key of the ransomware either when 

he latter sends or receives it to/from its control server. 

The other, larger branch of anti-ransomware solutions regards 

echniques that one can deploy regardless of a given family of ran- 

omware. 

For a general survey on (Windows-based) ransomware and 

he existing techniques for their detection and contrast, we point 

he reader to the thorough work recently published by Al- 

imy et al. (2018) ; Kok et al. (2019) , and Moussaileb et al. (2021) .

n the rest of this section, we focus on works that are the closest 



D. Berardi, S. Giallorenzo, A. Melis et al. Computers & Security 131 (2023) 103295 

Table 1 

Table comparing related works. Each row in the Table corresponds to a strategy found in one or more works related to ours—the last row corresponds to this article, for 

comparison—reported in the rightmost column. The other columns report properties of the strategy: to what actions it applies (detection, mitigation, restoration), whether 

it is generic ( ) or specific ( ) to a family of ransomware, and whether it is a drop-in solution (i.e., that only requires the user to install some software, as it happens e.g., 

for antiviruses). 

Strategy Detection Mitigation Restoration Generic 

Drop-in 

solution Publications 

Monitoring files Andronio et al. (2015) ; Kharaz et al. (2016) ; 

Kharraz et al. (2015) ; Scaife et al. (2016a) 

Key acquisition Hassan (2019) ; Kolodenker et al. (2017) 

Targeting files El-Kosairy and Azer (2018) ; Kharraz et al. (2015) ; 

Moore (2016) ; Moussaileb et al. (2018) 

Ransomware specific Chew and Kumar (2019) ; Lee et al. (2018) 

SDN traffic monitoring Akbanov et al. (2019) ; Cabaj et al. (2018) 

Restrict permissions Microsoft (2022) 

Extension randomisation Evans et al. (2011) ; Lee et al. (2019) 

Honeypot files Gómez-Hernández et al. (2018) 

Self-Healing file system Continella et al. (2016) 

Data flooding † ‡ This Work 

† not implemented in this article, ‡ copy-based flooding cf. Section 4 
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o ours. We organise the comparison with related work following 

he classification of the main phases of vulnerability management: 

etection, mitigation, and restoration. 

We summarise our analysis in Table 1 to provide an overview 

nd comparison of our proposal against the existing, related so- 

utions, looked from the perspective of their contrast strategy, the 

hases they apply to, their coverage, and the knowledge/effort that 

he solution requires for deploying/using it. 

Detection Detection schemes aim to identify ransomware attacks 

y monitoring specific activities. Some proposals use decoy files to 

etect ransomware. Moussaileb et al. (2018) use decoy folders and 

rigger a warning when a process passes through more than three 

f those folders. Moore (2016) proposed File Server Resource Man- 

ger (FSRM), a tool that triggers alerts when specific folders are 

odified in ways that are perceived as unusual w.r.t. the regularly- 

bserved behaviour of the user. El-Kosairy and Azer (2018) worked 

n the placement of decoy folders to increase their likelihood of 

eing the first victims of the ransomware, thus triggering a timely 

lert. 

Scaife et al. (2016a) presented CryptoDrop, a tool that performs 

he detection of ransomware following three main principles—

etect file format change, measure the change distance between 

les, measure the change of file entropy—and two secondary 

nes—detect file elimination and identification of a program that 

eads files of multiple formats but writes files in a single one. An- 

ther work in this category is HelDroid ( Andronio et al., 2015 ), 

hich works on mobile systems, and detects if an application at- 

empts to lock or encrypt the device without the user’s consent or 

f it displays some ransom request. 

Kharaz et al. (2016) introduced a dynamic analysis system, 

alled UNVEIL, based on the idea that, to mount a successful at- 

ack, ransomware must tamper with the user’s files. UNVEIL auto- 

atically generates an artificial user environment able to monitor 

rocesses’ interactions with user data and changes to the system’s 

esktop as telltale signs of ransomware-like behaviour. 

Other solutions, e.g., the ones surveyed by Kharraz et al. (2015) , 

inge on detecting and preventing (zero-day) ransomware attacks 

y looking at I/O requests and protecting the Master File Table 

MFT) in the NTFS file system. 

While the majority of proposals is host-based, network activ- 

ty too can offer opportunities for ransomware detection. Recently, 

ome solutions proposed to use Software Defined Networks (SDN) 

o detect ransomware. For example, Cabaj et al. (2018) proved 

hat an SDN-based analysis of HTTP message sequences and of 

heir respective content sizes can lead to detecting ransomware 

rom the CryptoWall and Locky families. In a similar work, 
3 
kbanov et al. (2019) use OpenFlow (an enabler of SDN) traffic 

nalysis to detect suspicious activities and to block infected hosts. 

As seen here, honeypots are usually employed for detection. The 

pproach of Data Flooding against Ransomware can be seen as a 

ew, dynamic interpretation of honeypots that overcome the limi- 

ations of the existing approaches. We review these more in depth 

n Section 3.1 , followed by a description of how detection works in 

ur paradigm in Section 3.2.2 . 

Mitigation 

Mitigation schemes strive to contrast the effects of ransomware 

ttacks. 

Works in this category frequently adopt some declination of the 

oving target technique (also part of the Data Flooding against 

ansomware mitigation mechanism), e.g., “masking” user files, so 

hat the ransomware skips them during the attack. 

For example, Lee et al. (2019) analysed ransomware families 

nd proposed a method that changes the extensions of files to for- 

ats normally skipped by ransomware. 

Another example is Gómez-Hernández et al. (2018) where the 

uthors proposed a general methodology called R-Locker to thwart 

rypto-ransomware actions. It is based on the deployment of hon- 

ypot archives, designed for the Linux system, to expose the ran- 

omware when it accesses these. In addition to that, this approach 

an automatically launch steps to solve the infection. 

This category hosts also OEM-provided solutions, e.g., Mi- 

rosoft Windows 10 includes a “controlled folder access” fea- 

ure ( Microsoft, 2022 ), which works by allowing only trusted ap- 

lications to access protected folders, configured by the user. 

Here, the work closest to our tool for ransomware mitigation, 

anflood, is the one by Lee et al. (2019) , since they both imple-

ent a moving target strategy. In addition to the latter, Ranflood 

eploys a resource contention countermeasure that further miti- 

ates the action of the malware. The principle exploited by Mi- 

rosoft’s solution is different: it relies on user permissions to stop 

he action of a possible rogue program, but it does not prevent it 

rom acting on any other, unprotected location. 

Restoration 

Restoration schemes concentrate on recovery the encrypted 

ata after attacks. 

An example of solutions in this category is 

hieldFS ( Continella et al., 2016 ), which relies on the integra- 

ion between an ad-hoc file system and a detector (we list 

hieldFS here since its main focus is recovery). When the detector 

ecognises a running ransomware, it activates a function of the file 

ystem that copies the data significant to the user to a location 

ot reachable by the ransomware, for later restoration. 
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Also Ranflood, through its copy-based strategies (On-The-Fly 

nd Shadow, cf. Section 4 ), provides a kind of recovery feature: if 

he original files are lost to the attack, the user has some chance to 

etrieve their content in the copies. One can refine this technique, 

.g., by using the Shadow archive (if any) to restore files lost after 

he attack and by unifying replicas and offering post-attack file- 

ecovery support (see Section 3.2.4 ). 

While both ShieldFS and Ranflood are reactive recovery 

ystems—that enact a response to an attack—the main difference 

ith ShieldFS is that the latter is not a drop-in solution, since it 

ntails switching to the namesake file system. 

This comes with several disadvantages. First, the user needs to 

ecompile the operating system kernel to correctly configure the 

hieldFS solution. Second, being file-system-dependent, the solu- 

ion is specific to the supported formats. Third, continuous porting 

etween different versions of the same kernel is necessary to adapt 

hieldFS to the latest version. 

Contrarily to ShieldFS, the solution we propose is generic—

his is witnessed also by the implementation of Ranflood (cf. 

ection 4 ), which uses the Java Virtual Machine for portability 

n any system that supports it—and requires only some prelimi- 

ary configuration—similar to mainstream drop-in software appli- 

ations, like antiviruses. 

. Data Flooding against Ransomware 

Before presenting relevant details of Ranflood, we introduce 

he family of techniques, called Data Flooding against Ransomware 

DFaR), where Ranflood comes from—hinged on the dynamic hon- 

ypot approach. We start by positioning DFaR against the existing 

ork on honeypots used to contrast ransomware. Then, we dis- 

uss how DFaR represents a family of techniques which includes 

pplications to three main areas of vulnerability management: de- 

ection, mitigation, and restoration. 

.1. Dynamic Honeypots and Data Flooding against Ransomware 

The essence of honeypots relies on the renowned scheme 

here administrators deploy easy-to-access computer resources 

hat emulate the real ones present within the same network. These 

ummy resources must look as indistinguishable from the actual 

nes as possible to an external intruder. Administrators isolate 

hese resources from the real system to detect and slow down 

ntrusions, setting up monitors to notify any suspicious activity 

which is illicit by definition, since there is no reason for legiti- 

ate users to access the honeypot). 

Previous works analysed the use of honeypots to detect ran- 

omware ( Al-rimy et al., 2018; Kok et al., 2019; Moore, 2016 ). The

implest declination of this approach lies in deploying one or more 

oneypot nodes that contain data profiles similar to the ones at- 

acked by ransomware. Then, monitors on the honeypot nodes can 

etect any changes to these static, isolated files and warn the ad- 

inistrators of the presence of malware in the network. 

More advanced techniques rely on using honeypots directly on 

he real nodes. The core of these solutions is to create honey- 

ot folders and monitor them for changes. While the idea seems 

romising—essentially, making any node of the network a possi- 

le honeypot monitor for ransomware—the analysis performed by 

oore (2016) on the existing techniques revealed a strong limi- 

ation to the approach. The problem, here, is that these solutions 

ely on static files always present on the disk of the user. Since 

he honeypot files can mix with the actual ones of the user, a so- 

ution that implements this technique must balance between its 

vailable trapping surface and the encumbrance it causes to the 

sers. In essence, if one wanted to have complete monitoring of 

 whole machine, there should be at least one honeypot file in 
4

ach of its folders. However, this quickly becomes inconvenient 

hen mixing honeypot files with users’ data. Indeed, users create, 

ove, and delete folders in their ordinary work routines and they 

ould trip the alarm of the detector. One could think of exclud- 

ng these frequently used folders, but it would be a strong limita- 

ion of the range of the detector, since most ransomware attacks 

hose locations ( Continella et al., 2016; Rossow et al., 2012; Y. Con- 

olly and Wall, 2019 ) which hold content sensitive to the user. 

ence, honeypot solutions resort to using seldom-browsed (and 

ttacked) locations and folders, thus limiting their trapping sur- 

ace and strongly restraining their detecting ability: in the words 

f Moore (2016) “there is no way to influence the malware to ac- 

ess the area containing the monitored files”. 

The idea behind Data Flooding against Ransoware develops this 

ake on ubiquitous honeypots against ransomware and gives it a 

uhammad-and-the-Montain kind of twist: 

if the ransomware will not come to the trap, then the trap must 

o to the ransomware 

Instead of using static files and incurring in the related trap- 

urface limitations, our intuition is to adopt a dynamic approach, 

here detection works by monitoring the activity of processes 

nd by generating “floods” of honeypot files. If the process un- 

er inspection modifies the honeypot files—refined instantiations 

an analyse the patterns of data transformation to minimise false 

ositives—we have strong evidence that it is some malware trying 

o lock the files of the user. 

Working on the above idea, we found that one can use data 

ooding not only to detect ransomware, but also to contrast their 

ction by mitigating their attacks and recovering from these. 

The essence of the approach behind Data Flooding against Ran- 

omware (DFaR) is to generate a deluge of honeypot files on de- 

and in sensible locations, such as where the ransomware is ex- 

cuting or user folders, to detect and contrast the attacks. DFaR 

etection overcomes the limitations of existing honeypot solutions 

y adopting a dynamic stance towards decoy file deployment and 

heir monitoring. DFaR mitigation (i.e., the contrast of an ongoing 

ttack) has two benefits. On the one hand, it generates resource 

ontention ( Hunger et al., 2015 ) with the ransomware: its I/O op- 

rations compete on accessing the disk against the many ones in- 

uced by the flooder, slowing down the action of the former; on 

he other hand, data flooding performs a moving target defence 

ction ( Evans et al., 2011 ): the legit files of the users mix with

he many decoy ones generated by the flooder, leading the ran- 

omware to spend time (and I/O access) harmlessly working on 

oneypot files rather than on the sensitive ones. Recovery in DFaR 

an happen when mitigation used flooding techniques that gener- 

te files as copies of existing files of the user. Here, the idea is that,

ven if the ransomware encrypts the original copies of the user, we 

an recover the missing files using their pristine copies (if any). 

.2. Phases of Data Flooding against Ransomware 

Before delving into the details of Ranflood—which implements 

n instance of the mitigation phase of DFaR—we focus on the 

ain three phases that characterise vulnerability management 

hrough data flooding against ransomware: detection, mitigation, 

nd restoration. 

.2.1. Three Phases of Data Flooding Against Ransomware 

We report in Figure 1 a depiction of the relationship among 

he detection, mitigation, and restoration phases of Data Flooding 

gainst Ransomware. In the figure, we start (the top-most element) 

ith a choice which asks whether we want to follow the auto- 

atic or manual triggering of the mitigation phase. As depicted in 

igure 1 , the Manual and Automatic activation modalities are mu- 

ually exclusive. The automatic activation implies the usage of a 



D. Berardi, S. Giallorenzo, A. Melis et al. Computers & Security 131 (2023) 103295 

Fig. 1. Flowchart of the relationship among the detection, mitigation, and restora- 

tion phases of Data Flooding against Ransomware. 

d

g

D

b

h

n

i

d

d

s

e

s

t

l

m

e

o

i

i

u

t

p

fl

p

e

d

p

3

i

o

t

i

p

g

b

w

t

p

r

w

a

d

d

t

a

c

m

m

t

t

s

e

i

w

b

p

t

q

fl

t

M

u

i

b

v

h

3

s

t

t

c

b

d

u

h

r

R

a

t

w

t

etector component that is able to identify the presence of an on- 

oing attack and triggers the mitigation phase. 

The detection behaviour represented in Figure 1 is specific to 

FaR. This is evident both by reading the callouts that explain the 

ehaviour of the elements and the relationship that the detection 

as with the restoration. However, in principle, one can use other, 

on-DFaR-based detection techniques (e.g., some of those reviewed 

n Section 2 ) to trigger the mitigation phase. In those cases, the 

etection would not necessarily interact with the restoration. 

Looking at Figure 1 , DFaR-based detection works by generating 

ecoy files given a target location. Ideally, the detector would con- 

ider a time-window within which it expects the decoy files to be 

ncrypted. If this happens, the detector trips an alarm (and pos- 

ibly triggers the mitigation phase), otherwise, the detector enters 

he restoration phase, which restores the original state of the target 

ocation as before the triggering of the detection, i.e., it safely re- 

oves the generated decoy files. When the mitigation phase starts, 

ither triggered manually or by an automatic detector, it floods 

ne or more target folders (e.g., where the ransomware is attack- 

ng, but also critical locations, independently of where the attack 

s running, such as the personal folders of the user). This happens 

ntil the emission of a signal to stop the flooding (represented by 

he “Continue Flooding?” decision in Figure 1 ). After the mitigation 

hase, one can decide to run a restoration routine that removes the 

ooding files. Depending on the flooding technique employed, this 

hase can also restore the files of the user that might have been 

ncrypted by ransomware. 

We dedicate the remainder of this section to providing further 

etails on how we envision the implementation of these three 

hases. 
5

.2.2. Detection 

Regarding the practice of detection, we distinguish two modal- 

ties for the implementation of the detection phase, which hinges 

n how one defines the target location of the detection—i.e., where 

he detector deploys its decoy files. 

The static modality is a mix between the traditional way of us- 

ng honeypot files for ransomware and the novel dynamic take we 

resent in this article. In this case, the user defines a set of tar- 

et locations that the detector periodically floods to spot possi- 

le ongoing attacks. This happens by having the detector perform 

hat we call “mini-floods”: it generates sets of random files in the 

arget location(s) and monitors any activities on those files. If a 

rogram modifies said generated files in a way compatible with a 

ansomware (e.g., by replacing them with encrypted copies), then 

e have strong evidence that the suspect is indeed ransomware, 

gainst which we can launch the mitigation phase (e.g., Ranflood). 

This modality partially overcomes the limitations of the tra- 

itional way of using honeypot files to detect ransomware. In- 

eed, classic honeypot techniques for ransomware detection have 

he limitation of targeting seldom-used folders to minimise inter- 

ctions with the user (that can result in false positives). On the 

ontrary, the dynamic loop of flood-based detection (deploy files, 

onitor within a time-window, restore) makes it easier to monitor 

ore trafficked, and more likely-to-be-attacked locations (such as 

he “Desktop” folder of the user). 

Alternative to the static modality is the dynamic modality. In 

his case, we envision a complementary process that “patrols” the 

ystem and triggers the detector on a specific set of locations. An 

xample of one such patroller is a process that monitors the activ- 

ties of the other running processes to spot behaviours that align 

ith the execution profile of ransomware. In this case, the flood- 

ased detector complements the activity of the patroller by dissi- 

ating the uncertainty of its detection logic, testing the hypothesis 

hat the suspicious process is ransomware. 

Of course, the design space of the patrolling process is 

uite wide, since it does not necessarily need to follow the 

ooding approach—we actually advise against using it as a pa- 

rolling routine, to avoid incurring the limitations reported by 

oore (2016) and discussed for the static modality—but can rather 

se complementary technologies such as process and file monitor- 

ng ( Mehnaz et al., 2018 ) and machine learning ( Gharib and Ghor- 

ani, 2017 ). 

The dynamic modality is the one we consider the most ad- 

anced and refined, which minimises the problems of classical 

oneypot techniques for detecting ransomware. 

.2.3. Mitigation 

The mitigation phase represents a reaction to an ongoing ran- 

omware attack, which a DFaR-based tool counteracts by flooding 

arget folders—such as where the ransomware is performing its at- 

ack but also, as a preventative measure, locations with files criti- 

al to the user—with decoy files. The principle is to stall the attack 

y confounding the authentic files of the user with a multitude of 

ecoy ones, which the malware would waste time encrypting. 

Since Ranflood builds on the principles of DFaR mitigation, we 

se the description of this phase to introduce the general be- 

aviour of Ranflood and dedicate Section 4.1 and Section 4.2 to 

espectively detail the three flooding strategies we implemented in 

anflood and the salient points of its software architecture. 

To aid our presentation, we depict in Figure 2 a scheme of the 

ction of some representative ransomware (top) and its interac- 

ion with a DFaR-based mitigation tool (bottom)—in the picture, 

e represent this tool with the Ranflood logo . 

In the top part of the figure, at time t 0 (the left-most block on 

he line), the ransomware starts its attack on a target folder by en- 
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Fig. 2. Depictions of the action of a crypto-ransomware (top) and the interaction between a DFaR-based mitigation tool (viz. Ranflood) and a crypto-ransomware (bottom). 
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rypting the files therein (the green documents represent the au- 

hentic files of the user). At time t 1 , the ransomware has encrypted 

ome files (viz., the red icons with a lock badge) and continues its 

ction on the next ones. At time t n , the ransomware has termi- 

ated the attack, and encrypted all files. 

At the bottom of Figure 2 , we show how a DFaR-based tool—

pecifically, Ranflood—contrasts the action above. In the figure, the 

ool appears only after some detection mechanism activated it (as 

iscussed in Section 3.2.2 ), at t 1 . 

The detection phase can instruct the tool to act on a specific set 

f folders, where the ransomware is performing its attack. How- 

ver, this mitigation technique can also work under the weaker as- 

umption that the detector found an ongoing attack, without indi- 

ating where this is happening; however, the user specified sen- 

itive folders to defend against the ransomware (e.g., the “Home”

older, “Documents”, etc.), which the tool floods with files. We re- 

pectively call these activity- and location-based activation modali- 

ies, and we deem both of them valid. 

Of course, the activity-based modality is the most focussed of 

he two, as it contrasts the action of the ransomware in the lo- 

ation where it is deploying its attack. When one cannot rely 

n a detector able to spot where the ransomware is acting, the 

ocation-based mode provides a way to (preemptively) ward sen- 

itive folders. Concretely, we also use the location-based modality 

n Section 5 to simplify the evaluation process of Ranflood, since it 

s not affected by the possible flakiness of activity-based flooding—

hich can change the target location of the countermeasure over 

ifferent runs. 

In general, one can even decide to deploy both activity- and 

ocation-based countermeasures to increase the effectiveness of the 

itigation. The conjecture, here, is that the mix would simultane- 

usly contrast the attack of the ransomware where it is causing 

amage, while proactively flooding the critical folders to the user 

n advance. Since this is an advanced composition of those modali- 

ies, we leave the empirical study of the effectiveness of their com- 

ination as future work. 

t

6 
Back to Figure 2 , upon activation, the mitigation tool generates 

oneypot files (the documents marked with the “R ” badge). The 

ssumption we make is that, by generating a number of copies sig- 

ificantly greater than the number of legit files, the ransomware 

ill more likely spend time on the former than on the latter. The 

ngoing action at t n represents the mitigation effect of the tool, 

hich hinders the attack of the ransomware and buys time for the 

efenders to intervene. 

.2.4. Restoration 

After understanding how the detection and mitigation phases 

f DFaR work, one might wonder: 

“Once we stopped the flooding of files, how do we restore the sys- 

em as close as possible to the original state?”

A possible answer to this question is what we dub the outflow , 

.e., a restoration procedure tailored for DFaR-based detectors and 

itigation tools. The principle backing this phase is the ability to 

iscriminate between authentic and decoy files, to safely and ef- 

ectively remove the latter. 

When we consider flooding with decoy files filled with random 

ontent, restoration is a simple mark-and-sweep kind of task. How- 

ver, this becomes an additional design dimension when paired 

ith copy-based flooding modalities—where the decoy files are 

opies of the original files of the user; examples of these modali- 

ies are the On-The-Fly and the Shadow flooding modalities of Ran- 

ood (presented in Section 4.1 ). 

Indeed, in cases where we performed the flooding with copies 

f the original files, the decoy files may be the only valid copies of 

he original ones, of which we want to preserve one and use it in 

lace of the lost original. In this case, one can define an outflow 

outine able to recognise when the authentic files of the user have 

een compromised and, if pristine copies of these are available as 

ecoy files, use these to restore the former. 

As expected, the implementation of the file-discrimination logic 

ehind the outflow phase has many alternatives. A naïve solu- 

ion can rely on storing (preferably in a remote, safe location) the 
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Algorithm 1: Random Data Flooding 

input : path, minSize, maxSize 

FILE_EXT ← [“.doc ′′ ,“.pdf ′′ ,“.xls ′′ ,“.jpg ′′ ,“.mp4 ′′ ,..]; 
while keepFlooding do 

f_size ← randomInt( minSize,maxSize ) ; 
cnt ← newByteArray( f_size ) ; 
ext ← rndSelect( FILE_EXT) ; 
append( cnt, getHeader( ext)) ; 
seed ← random64Seed() ; // 64-bit number 
for i ← 0 to i < ( capacity( cnt) / 64) do 

seed ← seed ^ (seed � 13); 

seed ← seed ^ (seed ≫ 7); 

seed ← seed ^ (seed � 17); 

append( cnt, seed ) ; 
end 

if capacity (cnt) > 0 then 

r ← newByteArray( capacity( cnt)) ; 
r ← fillWithRandomBytes( r) ; 
append (cnt, r); 

end 

writeFile( rndFilePath( path, ext) , cnt) ; 
end 
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2  
ist of generated files, which we can later provide to the outflow. 

his is the logic implemented by the DFaR restoration tool (called 

Filechecker”) we employ in our experiments in Section 5 to mea- 

ure the effectiveness of Ranflood. 

More advanced techniques can rely on digital fingerprint- 

ng ( Stinson and Paterson, 2018 , Chapter 13) to mark the flooding 

les in a way that prevents ransomware from performing quick 

nalyses to detect a common signature and exclude them from 

ts action. The idea, here, is to avoid saving any information on 

he fingerprinting process (e.g., the position of the fingerprints in 

he files) but rather rely on expensive fingerprint-inference pro- 

edures that statistically analyse the files and reconstruct the list 

f the generated ones. 1 Besides working as a watermarking pro- 

edure, we can use fingerprinting to hide some additional flood- 

ng information in the generated files. For example, for the file- 

opying flooding modalities, one can include in the generated files 

he path of the original copy, to help automatising the comparison- 

nd-replacement process on the encrypted sources. 

As a closing note on Data Flooding against Ransomware tech- 

iques, we highlight that these do not have particularly demand- 

ng prerequisites or dependencies (as opposed to some techniques 

eviewed in Section 2 , e.g., which require the user to format the 

isk using a dedicated file system), and they work with the tradi- 

ional file-access APIs provided by common operating systems. This 

ositive trait makes DFaR-based tools (such as Ranflood) drop-in 

olutions, akin to the regular antiviruses users and administrators 

nstall on home and work computers. 

. Ranflood 

We now focus our presentation on the relevant implementation 

etails of Ranflood. Namely, we present the three novel flooding 

trategies that Ranflood provides and its software architecture. 

.1. Three Data Flooding Strategies 

To streamline the presentation of the three flooding strategies 

e designed and implemented in Ranflood, we delineate these via 

implified pseudocode, useful to pinpoint their qualitative differ- 

nces, pros, and cons. We provide more details on their actual, 

ore sophisticated implementation in Section 4.2 . 

.1.1. Random 

Nomen omen , the Random flooding strategy, sketched in Algo- 

ithm 1 , floods a given location ( path , in the pseudo-code) with 

andomly-generated files. It incarnates the basic form of flood- 

ased mitigation: slowing down the ransomware via resource con- 

ention and moving-target defence. The strategy has the smallest 

riction to its deployment among the three we are presenting, as 

t does not entail pre-flooding configurations by the user (as dis- 

ussed for the On-The-Fly and the Shadow strategies, below). 

We expect the implementation of the strategy to be effective if 

t meets three conditions: (1) it generates files using extensions 

hat ransomware usually target ( Continella et al., 2016; Rossow 

t al., 2012; Y. Connolly and Wall, 2019 ) (e.g., in Algorithm 1 , and

n Ranflood, we use common formats such as “.pdf” and “.jpg”); 

2) the generated content of the files does not give way to anal- 

ses that let the malware suspect of their synthetic nature (e.g., 

eusing the same sequences over and over or having file headers 

hat do not match the standard format of their related extension); 

3) it produces large amounts of such files in a short timeframe. 
1 To harden the task for the ransomware, one can use sets of fingerprints, which 

orces the ransomware to either spend time on piecemeal inference computations 

r give up. 

u

t

(  

W

7 
The code in Algorithm 1 achieves (1), (2), and (3) to a 

atisfying degree. In particular, we deem (2) and (3) of good 

evel for two reasons. One, because we use a variant of Xor- 

hift ( Marsaglia, 2003 ) for fast randomness (the first for loop in Al- 

orithm 1 ) to quickly generate random content for files of random 

izes—in the [ minSize , maxSize ] interval, e.g., Ranflood uses file sizes 

n the range minSize = 2 8 and maxSize = 2 22 as default values, but 

he user can also configure these. Moreover, we make the format 

f the file (declared by its extension) and its header match—the 

rst instruction that append s to the cnt array the byte sequence 

elated to its extension ( getHeader ). The rndFilePath function 

enerates a random file path (location, file name) under the given 

path and with the given extension. 

.1.2. On-The-Fly 

The On-The-Fly flooding strategy is the first we present that 

erforms a copy-based flooding. Essentially, we replace the gen- 

ration of synthetic files performed by the Random strategy with 

he generation of copies of actual files found at a flooding loca- 

ion. File replication adds a layer of defence to the Random strat- 

gy, as it helps to increase the likelihood of preserving the users’ 

les by generating additional, valid copies that might escape the 

ansomware. 

Not all files have equal importance for this strategy. The basic 

ule we introduce, here, is skipping the replication of encrypted 

les, since they worsen the performance of the strategy; copying 

hese files is detrimental in two ways: a) it wastes the time of the 

ooder on files useless to the user and b) it generates files that the 

alware would skip, recognising them as already encrypted. 

The solution we develop to tackle this issue is to add a pre- 

iminary “snapshooting phase” to save a list of the valid files, later 

sed during flooding for efficient discrimination. Saving such a list 

rades a small occupation footprint on the disk with an increase in 

he efficacy of the flooding. 

Specifically, the snapshooting procedure reported in Algorithm 

 saves a digest (e.g., MD5) of the content of the user files and

ses it as an integrity verification code to validate the files during 

he flooding phase (Algorithm 3 ). 

For simplicity, in Algorithm 3 , at each iteration we read 

 readBytes ) the files from disk and write ( copy ) them, if valid.

hile this could be a reasonable implementation, it leaves open 
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Algorithm 2: On-the-fly Snapshooting. 

input : path 

for file in walkFiles (path) do 

if isFile(f) then 

saveOTFSnapshot( path, f, 

digest( readBytes( path, f ))) ; 
end 

end 

Algorithm 3: On-the-fly Data Flooding 

input : path 

while keepFlooding do 

for f in walkFiles ( path ) do 

b ← readBytes( path, f ) ; 
if getOTFSnaphot( path, f ) = digest( b ) then 

copy( b, randomFilePath( path )) ; 
end 

end 

end 
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Algorithm 4: Shadow Snapshooting. 

input : path 

for file in walkFiles (path) do 

if isFile(f) then 

saveShadowSnapshot( path, readBytes( f )) ; 
end 

end 

Algorithm 5: Shadow Data Flooding 

input : path 

while keepFlooding do 

for cnt in getShadowSnapshots (path) do 

writeFile( rndFilePath( path ) , cnt) ; 
end 

end 
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he possibility to lose files between iterations. 2 To avert this risk, 

anflood runs a more sophisticated version of Algorithm 3 , not 

hown here for the sake of clarity, that caches the content of the 

les read once from the disk and then iterates their replication 

trading memory occupation for efficiency). 

We close the description of On-The-Fly noting a subtle detail: 

aving snapshot lists exposes the strategy to failure due to the ac- 

ion of the ransomware, which could encrypt the list itself. This 

s a general problem of any software that uses secondary memory 

or its functionality (e.g., for configuration, runtime, etc.) and one 

an mitigate it a) via remote file storage, like NAS and the Cloud, 

nd b) using locations and (random, exotic) file extensions for lists, 

hich ransomware usually skip. Since the problem is orthogonal to 

he core of the flooding approach, we omit to discuss it here and 

lan to address the subject in future extensions. 

.1.3. Shadow 

The Shadow strategy is a variant of the On-The-Fly one (indeed, 

lgorithm of Shadow are close to, respectively, Algorithm of On- 

he-Fly), where snapshots save the full content of the files of the 

ser rather than more lightweight information, such as their fin- 

erprint. 

Since the Shadow snapshooting phase follows the traditional 

rocess of backup systems, it also suffers the same, known trade- 

ffs of local, on-site, and remote backup storage/retrieval. In Ran- 

ood, we use (tar.gz) archives to try to minimise the space re- 

uired for snapshots and preserve those archives on the same disk 

s the original copies, both for simplicity and to minimise loading 

imes. More advanced implementations could use secondary disks, 

AS, and the Cloud to mitigate the possibility of losing the local 

ackups if targeted by ransomware. 

4 

5 

.2. Software Architecture 

The implementation of the strategies from Section 4.1 in Ran- 

ood are more sophisticated, technically complex, and tuned to ex- 
2 Imagine, in the first iteration, that we replicate the valid file f in f ′ , the ran- 

omware encrypts both of them, and we lose (the possibility of copying) the con- 

ent of f . 

t

f

o

o

8 
loit the maximal degree of concurrency available on the attacked 

ode—maximising both IO access contention and the file genera- 

ion rate. Hereinafter, we report on the salient elements of the 

oftware architecture of Ranflood which support this high degree 

f concurrency. 

The Ranflood Architecture 

Two components determine the behaviour of Ranflood. 

First, the Ranflood engine implements refined versions of the 

lgorithms shown in Section 4.1 . We call these elements opera- 

ions , e.g., one operation can be an instance of the Random flood- 

ng strategy or the snapshooting routine of the On-The-Fly strat- 

gy. While, in Section 4.1 , we represent strategies as indivisible 

nits, in Ranflood one operation corresponds to several executable 

asks without a priori bounds, e.g., once we execute a Random 

ood operation, it generates an unlimited amount of tasks (until 

he user commands the termination of that operation) and each 

ask carries the code for the generation of one, specific random 

le. Since we envision the Ranflood engine to manage multiple 

oncurrent commands, possibly launched from different sources 

e.g., the user, an automatic detector, etc.), we opted for a Client- 

aemon model ( Tanenbaum, 2009 , Chapter 2). Specifically, the en- 

ine works as a daemon process in the background, not associated 

ith a particular user, and users/programs interact with it with 

ightweight, asynchronous clients/interfaces. 

The second component is the task manager , which handles the 

cheduling of operations and their tasks. Indeed, at runtime, we 

quate launched operations and their tasks as generic work that 

he task manager schedules for execution. The difference between 

n operation and a task is that the former generates other tasks, 

hile the latter performs I/O interactions. Concretely, we imple- 

ented the task manager following the Proactor ( Pyarali et al., 

997 ) event-handling pattern. The Proactor decouples task demul- 

iplexing and the task-handler scheduling logic from the actual be- 

aviour enacted by the single tasks, which run asynchronously. 

his execution method helps in further exploiting the parallelism 

vailable on the attacked node and in minimising the effect of I/O 

verhead and latency. Moreover, isolating tasks makes operations 

ore resilient: if a task fails, it does not affect its operation or the 

ther tasks. 

We further clarify the architecture of Ranflood by depicting a 

odel of it in Figure 3 . In the figure, we highlight the (interprocess

ommunication) interaction between the Client Command-line In- 

erface ( Client CLI ) and the Daemon . Besides issuing commands 

or contrasting ransomware, the Client can also set configurations 

f the Daemon , which the latter stores in a settings file . The 

ther main components are dedicated to implementing the differ- 
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Fig. 3. Model of Ranflood’s Architecture. 
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g

nt flooding strategies. The basic interface for the latter is Flooder , 

hich the Random , On-the-Fly , and Shadow flooders imple- 

ent. The On-the-Fly and Shadow strategies also have a snap- 

hooting phase, which they realise by implementing the Snap- 

hooter interface. The Daemon interacts with these components 

o obtain tasks that operate on files, ran in parallel by the Task 

anager —which implements the Proactor’s logic. The faded De- 

ector interface indicates that the Ranflood Daemon is organised 

o support the integration of (generic, i.e., not necessarily DFaR- 

ased) detectors. 

Ranflood (both its client and daemon) (at the time of writing 

t version 0.5.9-beta) is an open-source project 3 written in Java, 

ses the RxJava 4 library for the basic components of its task man- 

ger and, through the GraalVM 

5 compiler, it is available as native 

inaries for Windows, macOS, and Linux systems, besides its Java 

xecutable. 

. Evaluation 

We now present our evaluation of the effectiveness of Ranflood 

n lowering the loss rate of files due to ransomware attacks. To per- 

orm a thorough evaluation, we test Ranflood under different con- 

itions: we select 6 ransomware samples, we consider 4 increas- 

ng activation delays of Ranflood (which simulate in a deterministic 

ay the triggering by a detector), and test each of its 3 flooding 

trategies. 

The 4 increasing activation delays are important to investigate 

he relationship between the time it can take detection to activate 

anflood (i.e., to account for different timeframes for the automatic 

riggering of the mitigation, cf. Figure 1 ) and the effectiveness of 

he Ranflood action. In this article, we ditched the use of some 

pecific detection technology to avoid introducting additional vari- 

bles into our experiments—the most prominent of these being the 

ariance in detection times. Hence, we take 4 fixed delays which 

epresent increasing worst-case activation scenarios (we discuss 

he actual times in Section 5.1 , which are inspired by studies from 

he literature). Future work can focus on studying the relationship 
3 https://github.com/Flooding- against- Ransomware/ranflood . 
4 https://github.com/ReactiveX/RxJava . 
5 https://www.graalvm.org/ . 
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etween different families and implementations of detection tech- 

iques and Ranflood. To this aim, one would need to systematically 

eview the literature on ransomware detection, select a set of rep- 

esentative families of detectors, select implementations for each 

f these families, and establish and run statistically-relevant bat- 

eries of benchmarks. 

The combination of the ransomware samples, the activation de- 

ays, and the flooding strategies gives us 72 different run scenarios, 

otalling 78 considering also the 6 baseline runs where we do not 

et any Ranflood strategy run (called “None” configurations). We 

un each scenario 4 times, reporting the averages. Before showing 

he results, we detail the target operating system and data used in 

he tests, the selected piece of ransomware, and how we measure 

he loss rate in the tests. 

.1. Benchmarking Method 

Target Operating System and Data To select the target operating 

ystem, we choose to adopt the one with the wider market share 

n desktop machines in the last year (at the time of writing). To 

nd it, we used the data made available by StatCounter 6 , which 

eports a marked share of around 75% held by Microsoft Windows 

0. Thus, we use this operating system as the target. 

The target data is the set of files attacked by ransomware. Since 

he ransomware samples we consider mainly attack the profile of 

he user in the machine, our target data corresponds to a represen- 

ative set of files of an ordinary user ( Akbanov et al., 2019; Con- 

inella et al., 2016; Kharaz et al., 2016 ). 

There are mainly two ways to obtain a profile of this type. 

The first is organic, i.e., drawn from a real environ- 

ent used by a regular user for a certain amount of time. 

ontinella et al. (2016) and other authors ( Akbanov et al., 2019; 

haraz et al., 2016 ) followed this approach, using in their tests 

he profiles of some users who worked on the test environment 

or some time, e.g., a week. Two main drawbacks of this approach 

re: a) it might not generate a significant amount of data, since 

t depends on the type of activity of the user and the recording 

imeframe, and b) it requires precautions, e.g., we need to make 

ure the data is anonymised, to avoid, e.g., spreading sensible in- 

ormation of the user. The second approach is to create the profile 

ynthetically, but starting from real-world skeletons and populat- 

ng them. Here, the drawback is that the generated data is not or- 

anic. On the positive side, we do not depend on some selection of 

sers or some timeframe. 

Since we choose to ditch using a detector, which would instruct 

anflood to act on the attack location of the ransomware, we just 

eed to have an ordinary user profile skeleton and command Ran- 

ood to ward/flood those sensible folders (the location-based ac- 

ivation modality discussed in Section 3.2.3 ). Hence, we deem it 

ppropriate to follow the second approach and build a synthetic, 

ut realistic target profile. 

To do this, we built on the skeleton reported by Halsey (2016) , 

ho identified the main user paths and folders of the Win- 

ows 10 File System. Then, for the user files, we generated 

GB of data, following the indications of Kaspersky (2021) and 

caife et al. (2016b) on the formats most subject to ransomware 

ttacks. Besides the format, we also followed other guidelines to 

une the profile for the task: we created files with names usu- 

lly preferred by ransomware ( Anderson and McGrew, 2016; Kroll, 

021 ) and, following the suggestions by ( Rossow et al., 2012 ), we

ave to the profile a user-interactivity imprint by installing a set 

f applications among the most used, like a browser and an office 

uite. 
6 https://gs.statcounter.com/os- market- share#monthly- 201807- 202111 . 

https://github.com/Flooding-against-Ransomware/ranflood
https://github.com/ReactiveX/RxJava
https://www.graalvm.org/
https://gs.statcounter.com/os-market-share#monthly-201807-202111
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7 Since IO contention is a fundamental element of the Ranflood contrast action, 

future empirical studies can extend the types of storage devices used for the testbed 

to other technologies like Solid-State Drives (SSD), Non-Volatile Memory Express 

(NVMe) drives. 
In the generated profile, we have 13 folders, among which 

Documents”, “Desktop”, “Music”, and “Pictures”, which we con- 

ider sensible to the user and which we flood and monitor to cal- 

ulate the loss rate after each attack. 

Ransomware To identify the ransomware samples for the tests, 

e used the VirusTotal Intelligence API to obtain the current Win- 

ows executables associated with the main ransomware families. 

e obtained a set of samples (including CryptoWall, TeslaCrypt, 

annaCry, Certbot, NotPetya, and Critoni), which we tested to ac- 

ually execute in our target environment. Not all samples worked, 

.g., some samples did not receive instructions and public encryp- 

ion keys from their control servers and did not perform any at- 

ack. We filtered out these samples, to only focus on active ones. 

oreover, we excluded ransomware that forced the machine to 

estart. This is not a problem from the functional point of view of 

anflood (which we could instruct to start its routine after the re- 

oot), but it would make the tests more unreliable since we would 

ot know any more the exact delay between the start of the ran- 

omware and Ranflood. Thus, we also removed these samples. The 

esulting set of samples includes 6 pieces of ransomware: Gand- 

rab, LockBit, Phobos, Ryuk, Vipasana, and WannaCry. 

Logs and Metrics 

The final ingredients of our evaluation method are 1) the ex- 

cution timeframe, i.e., how much time we let the ransomware 

nd Ranflood execute and 2) the 4 activation delays of Ranflood, 

o simulate the triggering from a detector. For the timeframe, we 

un preliminary experiments and saw that 10 minutes are gener- 

lly appropriate to witness the full extent of a ransomware attack 

n users’ folders—this is matched by results from other researchers 

ho verified that the action timeframe of different families of ran- 

omware is within 4 to 9 minutes ( Ahmed et al., 2020; Zuhair and

elamat, 2019 ). For the delay, we consider detectors that respec- 

ively require the ransomware to run for 5%, 10%, 30%, and 50% 

f the timeframe before triggering Ranflood, hence 1 / 2 , 1, 3, and 5

inutes. We selected these delays to look at the worst-case scenar- 

os, starting from the high-end values of the detection time spec- 

rum, ranging around 30–40 seconds ( Ahmed et al., 2020; Zuhair 

nd Selamat, 2019 ), and looking at even less performant cases with 

he 1-, 3-, and 5-minute delays. 

The data points we want to collect in the tests are two: the 

umber of files lost to encryption and, for copy-based strategies, 

he number of files saved through copying (i.e., when we lost the 

riginal file but have a pristine copy). To compute this data, we 

et the piece of ransomware and Ranflood run for the length of 

he timeframe, we shut the test machine down, and then mount 

he disk on a different machine to analyse it (this is necessary to 

ake sure that the piece of ransomware cannot modify the files 

ny more). To calculate the data loss, we compare the digests of 

ll the files in the target profile (collected beforehand) against the 

les in the mounted drive—we use this method to find all valid 

les, both the original and the replicas, counted once (i.e., all files 

ith the same digest count as one). 

.2. Testbed 

To run the tests, we assembled a testbed made of a cluster 

f test nodes with hardware representative of today’s ordinary of- 

ce/desktop personal computers. The test nodes ran isolated Win- 

ows 10 virtual-machines, orchestrated by a central gateway run- 

ing Ubuntu 21.04 (to further avoid possible interactions with ran- 

omware samples in the cluster). The gateway of the testbed was 

he only terminal with network access (this avoided problems like 

he escape of some ransomware, e.g., due to unknown network ex- 

loits, and the execution of unexpected processes, e.g., update rou- 

ines, which might interfere with the performance). Figure 4 re- 

orts a schema of the testbed, where “PVE” prefixes the test nodes. 
10 
he main point of assembling this testbed was to automatise and 

tandardise the tests and make our data as reliable as possible. 

Regarding the nodes, we used four desktop computers each 

quipped with an Intel i3-4170 (3.70GHz) dual-core, four-thread 

PUs, 12GB of RAM, and a Hard Disk Drive 7 (HDD) of 500GB. These 

achines run ProxMox version 7.0-8 on GNU/Linux. We built the 

emplate for the virtual machines from the one provided by Mi- 

rosoft of Windows version 10 (x64) Stable 1809. Each node runs 

ne virtual machine with a dual-core, four-thread CPU, 12GB of 

AM, and 40GB of disk. 

The test configurations using Ranflood are 72. In addition to 

hese, we gather baseline rate-loss values for each ransomware, 

un without Ranflood, totalling 78 configurations. We run each 

onfiguration 4 times for a total of 312 runs and gather the results 

or each scenario as the average of the related runs. 

Each test run follows the steps: 

1. we start the virtual machine and wait that the environment is 

ready to both execute the set malware of the run and Ranflood 

(i.e., we wait for Windows to boot properly); 

2. we start the ransomware sample and wait for the set delay of 

the run; 

3. we start Ranflood (Windows native version) with the set flood- 

ing strategy of the run. To maximise resource occupation, we 

launch all 13 flooding instances in parallel, each targeting the 

sensible folders mentioned in Section 5.1 ; 

4. after 10 minutes since we started the virtual machine, we shut 

it down; 

5. we access the disk from the gateway and run an analyser, called 

the Filechecker (available as a companion, open-source tool to 

Ranflood) 3 to calculate the data points of the run; 

6. we delete the virtual machine and start the next test run. 

Notably, the Filechecker tries to restore the system to the state 

efore the attack by removing all files except the original, valid 

nes and the decoy ones, which it can use to replace the origi- 

als, if lost (this requires the usage of some copy-based flooding 

trategy, cf. Section 3.2.4 ). Concretely, the Filechecker includes two 

hases. First, before an attack, it records all the signatures (hashes) 

f the files in the target directories in a reference database (this is 

imilar to how OTF snapshooting works, cf. Algorithm 2 ). Second, 

fter an attack, it checks the files present on the disk against the 

ecorded signatures. The Filechecker preserves a file if its signature 

orresponds to a recorded one. In the case of decoy files that are 

opies of the original ones (which have a different path than the 

ne corresponding to a recorded signature), if the original is miss- 

ng we replace it with the copy. 

.3. Results and Analysis 

The complete set of data gathered from our experiments is 

vailable at https://doi.org/10.5281/zenodo.6587519 . We report the 

esults of our tests in Figure 5 , as percentages of lost, saved, and

opied files in each attack scenario. For the sake of clarity, we in- 

luded only the average result computed across the multiple runs 

f each test, because the standard deviation is generally low among 

he cases. Specifically, the highest standard deviation occurs in 

ests related to Phobos, whose average percentage standard devi- 

tion is ca. 8% (with average standard deviation of 13). 

The cells in Figure 5 are composed as follows: the central area 

hows the percentage of valid (non-encrypted) files. Since copy- 

ased flooding strategies allow the restoration of lost original files, 

https://doi.org/10.5281/zenodo.6587519
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Fig. 4. Testbed schema. The operator connects to the Gateway to run the tests and retrieve the reports. The test nodes (PVE ∗) host one virtual machine each. 

Fig. 5. Results of the aggregated tests, loss-rate percentage—each cell shows the percentage of valid (non-encrypted) files. For copy-based strategies we break down the 

percentage of valid files into a blue one (original) and a green one (restored), reporting the related percentages respectively at the bottom and at the top of the bar. The 

longer the blue/green bar, the better. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Average time and standard deviation in seconds 

of the copy-based snapshooting and restoration 

(Filechecker). 

Avg. (s) SD (s) 

OTF snapshooting 22.15 13.96 

Shadow snapshooting 38.69 12.23 

Filechecker restoration 573.9 18.38 
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e break down the percentage of valid files into a blue one (orig- 

nal) and green one (restored), reporting the related percentages 

espectively at the bottom and at the top of the bar. The red part

ompletes the picture, representing the percentage lost. 

The first pieces of ransomware we comment on are GandCrab 

GC), Ryuk, and Vipasana, which share similar behaviour and thus 

an be reported as one, for the sake of brevity. They encrypt only 

les that we do not consider as being sensitive for the user (i.e., 

utside the 13 folders monitored by the test cf. Section 5.1 ). Hence, 

e report 100% saved files. 

LockBit encrypts files following a strategy where the malware 

uickly skims through the folders of the user, only encrypting the 

rst 4 KB of each file. This behaviour, in unison with the relatively 

low response of Ranflood (which in our tests is set to start, at 

he earliest, 30 seconds after the activation of the ransomware) 

akes LockBit the toughest among the opponents—in the future 

e intend to deepen our research on this kind of attack modal- 

ty, e.g., proposing ad-hoc, copy-based strategies able to efficiently 

ontrast the malware by restoring just the compromised portion of 

he encrypted files. Both the Random and On-The-Fly strategies fail 

o contrast it—the ransomware leaves a constant 9% of valid files, 

hich it does not consider as its targets (e.g., configuration files). 

he Shadow strategy is the only one able to partially hinder Lock- 

it (reaching a 48% of recovery of only copied files) since it uses 

eparate copies of the files for the flooding. 

Phobos is designed to encrypt all files in the system when no 

ountermeasure is put in place, as shown by the 0% of valid files 

n the “None” column of the figure. The interaction with the Ran- 

om strategy shows an unexpected pattern. Its earliest activation 

chieves the lowest score (0%), while late activations produce bet- 

er results, yet not amounting to some regular pattern: the per- 

entage of valid files jumps to 13% when the delay is 60 seconds, 

ecreases to 10% for 180 seconds, to reach the best value of 14% 

or 300 seconds. We attribute this behaviour to some internal de- 

ays of the ransomware (e.g., to elude detection), which makes the 

0s and 300s activation time the fittest to contrast it. This phe- 

omenon is more or less repeated in the Shadow modality, where 

he 30-second delay achieves a 22% recovery while the later 60- 

econd delay reaches 29%, before falling to a meagre 2% for higher 

elays. 

WannaCry behaves like LockBit, but it is less aggressive, leav- 

ng more than half of the user’s files untouched when left free to 

oam (see the “None” column). Among our ransomware samples, 

annaCry seems the one which Ranflood can contrast the best. 

imilarly to Phobos, we notice that we hit the “sweet spot” for 

he activation delay when it matches with some internal delay of 

he malware. The effectiveness of the Random modality peaks at 

3% saved files when activated with a 180-second delay, On-The- 

ly peaks at 67% saved files when activated with a 60-second de- 

ay, and Shadow reaches 94% at its earliest activation time. 

Copy-based Overhead and Restoration Aside from the perfor- 

ance benchmarks of the mitigation, we benchmark both the ini- 

ial overhead derived from the snapshooting routines of the On- 

he-Fly and Shadow flooding strategies and the performance of 

he Filechecker (i.e., a possible implementation of the restora- 

ion phase). In particular, the former is interesting to describe 

he footprint of the software during the normal operations of the 

ser. 

We present the performances in Table 2 as the average over 

ight experiments and the standard deviation of these samples—

e report the baseline in the first row (30 sec.) of each table for 

eference. 

We deem the overhead of both the On-The-Fly and the Shadow 

trategies compatible with the regular operations of users (interac- 

ive) and servers (batch), as they allow for other processes to ex- 

cute concurrently and not take a lot of time to complete—this is 
12 
ot different from having an antivirus scan running alongside other 

rocesses. 

Finally, we notice that the reported measures have a small-yet- 

on-negligible standard deviation. Indeed, the measures are influ- 

nced by several factors which increases the stability of the perfor- 

ance. In particular, regarding the performance of the Filechecker, 

e notice: 

• differences between the operating systems: the Filechecker 

runs on Linux, where we mount the NTFS disk of the virtual 

machine through the “qcow2” driver, while the signatures and 

archive generations run directly in the Windows virtual ma- 

chine, using the virtual device; 

• scheduling and parallelism: the Filechecker runs in sequential 

mode while the signatures and archive generation run in a mul- 

tithreading application. 

While these performance results are encouraging, we deem an 

mportant future work setting out specific tests that would allow 

s to profile the algorithms and runtimes of the tools, refine them, 

nd increase their performance. 

.4. Comparison with Empirical Evaluations of Related Work 

To conclude our empirical assessment of Ranflood, we put our 

esults in perspective against those from empirical evaluations of 

elated work. In doing so, we underline that it is not possible to 

irectly compare the results of the considered evaluations, given 

hat they have been drawn from diverse hardware and software 

ettings, on different sets of ransomware samples, and with dis- 

arate experimental set-ups. Moreover, the considered tools are 

ensibly different in terms of the phases they target to contrast 

ansomware (detection, mitigation, restoration), the technique they 

ely upon, and the usage requirement—e.g., a solution like Ranflood 

s closer to installing an antivirus while e.g., ShieldFS is a more 

nvolved one, which requires the user to recompile the operating 

ystem kernel. 

Considering the works covered in Section 2 , summarised in 

able 1 , we compare with those proposals that, like Ranflood, are 

arked as generic (not tailored to any specific ransomware fam- 

ly) and that implement the mitigation and/or restoration phases. 

hese requirements give us four items: ShieldFS ( Continella et al., 

016 ), R-Locker ( Gómez-Hernández et al., 2018 ), the tool by Lee 

t al. ( Lee et al., 2019 ), and Microsoft controlled folder ac- 

ess ( Microsoft, 2022 ). Unfortunately, we could not retrieve experi- 

ental data regarding the last item (Microsoft’s), excluding it from 

his comparison. 

ShieldFS The evaluation done by Continella et al. (2016) comes 

he closest to ours, since they also measure the performance based 

n the ratio of recovered data. Thanks to its detection and shad- 

wing capabilities, ShieldFS reaches an aggregated recovery rate of 

ore than 90% (the authors do not provide the breakdown of the 

onsidered ransomware families). Quantitatively, aggregating the 

ata from our experiments gives us an 80% recovery rate for Ran- 

ood. Notwithstanding the good figures of the two proposals, we 

tress that our comparison can only be at the qualitative level, be- 

ause quantitative comparisons would entail the definition of com- 

on testing environments and infrastructures. 
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R-Locker 

R-Locker implements a detection and mitigation mechanism, 

ased on the distribution/spread of honeypot files used for both 

he detection and mitigation phases. The authors only report the 

ggregated detection rate, 100%, but do not report the ratio of 

aved-vs-lost files. While the reported figure is impressive, there 

s a caveat, reported by the same authors, which is that the detec- 

ion phase can be bypassed by any ransomware that encrypts the 

les randomly, making the performance drop significantly. Since 

ómez-Hernández et al. (2018) focus on the performance of detec- 

ion while we benchmark the mitigation phase, we cannot directly 

ompare with their results. 

Tool by Lee et al. 

The tool by Lee et al. implements a Moving Target Defence 

trategy, based on changing the type or extension of the file to 

eceive the ransomware. Lee et al. report aggregated data as “de- 

ence rate”, where they preemptively run their solution (changing 

he type and extension of a set of selected files), then, they let the 

ansomware run for 5 minutes and calculate the number of en- 

rypted files. They report a total of 98.6% defence rate. 

Also comparing our evaluation of Ranflood and that of Lee et al. 

s difficult, since the latter run the tool before the ransomware, 

hile we test Ranflood after the ransomware started the attack, 

imulating the triggering from a detector. 

. Discussion and Conclusion 

We presented Data Flooding against Ransomware (DFaR) as a 

amily of methods to contrast ransomware that mixes dynamic 

oneypots, resource contention, and moving target defence. We de- 

ailed the three phases of detection, mitigation, and restoration 

f DFaR. To show the applicability of DFaR we also introduced 

nstantiations of the mitigation and restoration phases as imple- 

ented within a tool called Ranflood—specifically Ranflood imple- 

ents three flooding strategies of which two enable the restoration 

hase. We also showed preliminary but extensive benchmarks that 

emonstrate that Ranflood (and its three flooding strategies) is ef- 

ective in contrasting the action of different kinds of ransomware. 

n the future, we plan to deepen the coverage of these bench- 

arks, e.g., considering different ransomware families, alternative 

ser files structures (both synthetic, as done here, and organic), 

nd the interaction with detectors. 

Ranflood is more of a stepping stone than the end of the road. 

ndeed, as presented in Section 3.2.2 , one can use DFaR to detect 

ansomware. Future work in this direction goes towards studying 

ifferent instantiations of the DFaR detection paradigm and inves- 

igating their interplay: a ) developing work similar to the one we 

ndertook with Ranflood—implementing and empirically studying 

he effectiveness of the static and dynamic modalities of detection 

cf. Section 3.2.2 ); b ) investigating ways of mixing DFaR detection 

ith other existing approaches from the literature, in particular, to 

mplement the patrolling process of the dynamic modality; c ) test- 

ng the effectiveness of detection instantiations based on different 

ombinations of the dynamic and static modalities, depending on 

isparate platforms of execution, contexts of application, and ran- 

omware families. 

Exfiltration ransomware 

While, in this work, we focussed on crypto-ransomware, there 

s another growing category of ransomware that is becoming more 

nd more threatening for organisations: exfiltration-based ran- 

omware. Indeed, given the constant threat of crypto-ransomware, 

rganisations started contrasting them with backup plans. Of 

ourse, the latter do not hinder the diffusion of ransomware, but 
fl

13 
hey curb the motivation of the attackers to strike; the victims 

re less likely to pay if they can restore (most of) their encrypted 

les from backups. This motivated the recent surge of new exfil- 

ration ransomware, whose objective is not to prevent users from 

ccessing their data but to abduct their sensitive files and threaten 

o disclose their contents, unless the victims pay the prover- 

ial ransom ( Michael, 2021 ). While currently tailored for crypto- 

ansomware, we conjecture that DFaR and Ranflood can also effec- 

ively contrast exfiltration-based attacks by inducing the malware 

o transmit decoy files rather than those of the user. In the process, 

he tool would make the ransomware waste disk and network IO 

ccess, slowing down the exfiltration of worthy payload. Given the 

ising importance of exfiltration-based attacks, we envision future 

ndeavours also in this direction. Work, here, can start by bench- 

arking the performance of the available flooding strategies of 

anflood in limiting data exfiltration. Then, one can introduce new 

r refined versions of the presented flooding strategies to max- 

mise the contrast they provide against exfiltration-based attacks 

e.g., on the content of decoy files, their folders’ layouts, etc.). To 

his end, advanced versions of Ranflood (in synergy with detectors) 

an profile the type of malware that is attacking and tune flood- 

ng strategies that minimise its effect. For example, one can refrain 

rom using copy-based strategies when dealing with exfiltration, 

o avoid the possibility of providing sensible content to the ran- 

omware via decoy copies of the actual files of the user. However, 

e underline that the matter can be more nuanced than this. In- 

eed, when we induce the ransomware to exfiltrate the same con- 

ent over and over, we are making the ransomware waste time and 

andwidth to obtain the same information. Future work on exfil- 

ration ransomware shall investigate this matter, e.g., quantify the 

atio between exfiltrated content and wasted bandwidth/time due 

o copy-based flooding strategies. 

On a more general note, we foresee studying the interplay be- 

ween detection and mitigation, so that the former can tune the 

ooding strategy of the latter. The main example, here, is a detec- 

or that “understands” the patterns of the attacking ransomware, 

nd informs the mitigation to use specific flooding modalities that 

ave been empirically demonstrated to work best against that kind 

f ransomware. Referring to the previous paragraph, a detector 

ble to discriminate between crypto- and exfiltration-based ran- 

omware can instruct the mitigation tool to use copy-based strate- 

ies rather than random-based ones. 

Besides investigating the functional aspects of DFaR solutions, 

e deem it important to study the aspects related to human- 

omputer interaction with Ranflood and other DFaR-based proto- 

ypes. These aspects include letting the user know when a detec- 

ion instance starts, on which folders the detector operates, and 

hat files the software creates as decoys. The same goes for the 

itigation, where we should inform the user of the ongoing attack 

nd the fact that the software is flooding which folders of the at- 

acked machine. Experiments should investigate both what are the 

est techniques to communicate this information to the user and 

hat are the best ways to stimulate the user in adopting secure 

ehaviour, e.g., to inform users of the ongoing attack and report 

he issue to system administrators. 

Finally, future work can focus on the restoration phase of DFaR, 

.g., following the idea of implementing a fingerprinting feature 

n the mitigation and restoration phases, which dispenses the 

ser from relying on additional resources than the decoy files 

hemselves (cf. Section 3.2.4 ). This is exemplified by our naïve 

mplementations—e.g., the On-The-Fly copy-based strategy and the 

estoration tool (Filechecker)—which rely on a list of signatures of 

he original files, whose loss could prevent us from executing the 

ooding/restoration step in our experiments. 
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