43 research outputs found

    An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini) : taxonomic, systematic, biogeographic and evolutionary insights

    Get PDF
    The subgenus Liophloeus Weise, 1894 of Liophloeus Germar, 1817 (Coleoptera: Curculionidae: Entiminae: Polydrusini) consists of five morphologically similar species traditionally diagnosed based on the shape of the aedeagus. However, traits of the genital apparatus exhibit substantial and overlapping inter- and intraspecific variation. All five species have the same ecological requirements and occur in central and eastern Europe, mostly in montane areas. The focus of this work was to verify the taxonomic status and validity of Liophloeodes species using a combination of molecular and morphometric techniques. Specimens were collected from the entire distribution range and initially assigned to a species according to the aedeagal shape. Genetic diversity and phylogeny of the subgenus were studied using three molecular markers (two ribosomal, 28S-D2 and ITS2, and one mitochondrial, COI). Moreover, several morphological characters were used for multivariate morphometric analyses. Finally, presence and prevalence of bacterial endosymbionts among species were investigated. Phylogenies based on ribosomal markers suggest that traditional species are correctly delimited, whereas COI phylogeny suggests hybridization and introgression occurring between Liophloeodes species. Morphometric analyses confirmed low interspecific diversity. Two major bacterial endosymbionts, Rickettsia and Wolbachia, were detected in many populations. We argue that Liophloeodes consists of young lineages whose evolution and diversification was possibly mediated by cyclic climate change events

    First screening of bacterial communities of Microdon myrmicae and its ant host: do microbes facilitate the invasion of ant colonies by social parasites?

    Get PDF
    Abstract Many studies have highlighted how numerous bacteria provide their hosts essential nutrients or protection against pathogens, parasites and predators. Nevertheless, the role of symbiotic microorganisms in the interactions between social insects and their parasites is still poorly known. Microdon (Diptera, Syrphidae) is a peculiar fly genus whose larvae are able to successfully infiltrate ant colonies and feed upon the ant brood. Using high throughput 16S rRNA gene amplicon sequencing, we provide the first microbiome survey of Mi. myrmicae larvae and larvae and workers of its host, Myrmica scabrinodis, collected from two sites in England. We analyzed the microbiome of the external surface of the cuticle and the internal microbiome of the body separately. The results clearly show that the Mi. myrmicae microbiome significantly differs from that of its host, while no substantial dissimilarity was detected across the microbiome of ant workers and ant larvae. Microdon myrmicae microbiome varies across the two analyzed sites suggesting that bacteria communities of Mi. myrmicae are derived from the environment rather than by horizontal transmission between hosts and parasites. Families Streptococcaceae, Carnobacteriaceae and Rizhobiaceae are dominant in My. scabrinodis, and Spiroplasma is dominant in ant workers. Microbiome of Mi. myrmicae larvae is mainly characterized by the family Anaplasmataceae, with Wolbachia as predominant genus. Interestingly, we found Serratia within both Mi. myrmicae and Myrmica larvae. Bacteria of this genus are known to produce a family of pyrazines commonly involved in ant communication, which could play a role in Microdon/ant interaction

    Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences

    Get PDF
    The blue-gum chalcid Leptocybe invasa Fisher & LaSalle (Hymenoptera: Eulophidae) is a gall wasp pest of Eucalyptus species, likely native to Australia. Over the past 15 years it has invaded 39 countries on all continents where eucalypts are grown. The worldwide invasion of the blue gum chalcid was attributed to a single thelytokous morphospecies formally described in 2004. Subsequently, however, males have been recorded in several countries and the sex ratio of field populations has been found to be highly variable in different areas. In order to find an explanation for such sex ratio differences, populations of L. invasa from a broad geographical area were screened for the symbionts currently known as reproductive manipulators, and both wasps and symbionts were genetically characterized using multiple genes. Molecular analyses suggested that L. invasa is in fact a complex of two cryptic species involved in the rapid and efficient spread of the wasp, the first recovered from the Mediterranean region and South America, the latter from China. All screened specimens were infected by endosymbiotic bacteria belonging to the genus Rickettsia. Two closely related Rickettsia strains were found, each infecting one of the two putative cryptic species of L. invasa and associated with different average sex ratios. Rickettsia were found to be localised in the female reproductive tissues and transovarially transmitted, suggesting a possible role of Rickettsia as the causal agent of thelytokous parthenogenesis in L. invasa. Implications for the variation of sex ratio and for the management of L. invasa are discussed. Nugne

    The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps.

    Get PDF
    Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history
    corecore