55 research outputs found

    Dwarf spheroidal satellites of M31: I. Variable stars and stellar populations in Andromeda XIX

    Get PDF
    We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2') of Andromeda's dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23'x 23' area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ( = 0.62 d, \sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ( = 25.34 mag, \sigma= 0.10 mag) we determine a distance modulus of (m-M)0_0=24.52±0.2324.52\pm0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5±0.118.5\pm0.1 mag. The ACs follow a well defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.Comment: accepted for publication in Ap

    Lucifer Reduction Pipeline Cookbook

    Get PDF
    This is the cookbook of the pandora.lreducer, the LUCIFER reduction pipeline: the first version of pipeline used by the LBT spectroscopic reduction center. This is the first build block of the SIPGI software developed in the next year

    SpectraPy

    Get PDF
    SpectraPy is an Astropy affiliated package, which collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. The library is designed to be spectrograph independent. It comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments. Current implementation of SpectraPy is focused on the extraction of 2D spectra: it produces wavelength calibrated spectra, rectified for instrument distortion. The library can be used on both longslit (LS) and multi object spectrograph (MOS) data

    SpectraPy Documentation

    Get PDF
    This is the SpectraPy manual. SpectraPy is an Astropy affiliated package, which collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph

    LUCIFER@LBT view of star-forming galaxies in the cluster 7C 1756+6520 at z~1.4

    Full text link
    Galaxy clusters are key places to study the contribution of {\it nature} (i.e. mass, morphology) and {\it nurture} (i.e.environment) in the formation and evolution of galaxies. Recently, a number of clusters at z>>1, i.e. corresponding to the first epochs of the cluster formation, has been discovered and confirmed spectroscopically. We present new observations obtained with the {\sc LUCIFER} spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large scale structure around the radio galaxy 7C1756+6520 at z=1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analyzing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called Fundamental Metallically Relation (FMR), which is known not to evolve with redshift up to z=2.5=2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshift. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright AGN, belonging to the cluster, which shows a significant outflow of gas.Comment: Accepted for publication by MNRAS, 10 pages, 6 figures, 3 table

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Problem with MODS data in the blue channel

    Get PDF
    During the 2013 June Italian run, a MODS blue proposal (MOS) has been observed (ID 31) and reduced. The PI is interested in measuring absorption features of high redshift objects. These feature are expected to be observed in the bluest region of the spectra

    Test on LUCIFER calibrator science frames

    Get PDF
    In order to find the best way to combine together telluric spectra and compute a sensitivity function, we observed different scientific frames of telluric stars. During this exploration we detected strange changes in spectra obtained from consecutive frame, this variability prevents us to compute a suitable sensitivity function, so we need to investigate better these frames

    SIPGI: an interactive pipeline for spectroscopic data reduction

    Full text link
    SIPGI is a spectroscopic pipeline for the data reduction of optical/near-infrared data acquired by slit-based spectrographs. SIPGI is a complete spectroscopic data reduction environment retaining the high level of flexibility and accuracy typical of the standard "by-hand" reduction methods but with a significantly higher level of efficiency. This is obtained exploiting three main concepts: 1) a built-in data organiser to classify the data, together with a graphical interface; 2) the instrument model (analytic description of the main calibration relations); 3) the design and flexibility of the reduction recipes: the number of tasks required to perform a complete reduction is minimised, preserving the possibility to verify the accuracy of the main stages of data-reduction process. The current version of SIPGI manages data from the MODS and LUCI spectrographs mounted at the Large Binocular Telescope (LBT) with the idea to extend SIPGI to support other through-slit spectrographs.Comment: 4 pages, 3 figure, to appear in proceedings of the Astronomical Data Analysis Software and Systems (ADASS) XXXII, virtual conference held 31 October - 4 November 202

    Euclid preparation: XXVI. the Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline of the Organisational Unit MER of the Euclid Science Ground Segment, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper focusses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes, DeepLeGATo, Galapagos-2, Morfometryka, ProFit and SourceXtractor++, on a sample of about 1.5 million simulated galaxies (350 000 above 5σ) resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (<10% scatter on ideal Sérsic simulations) down to an apparent magnitude of about IE = 23 in one component and IE = 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5, respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the official Euclid Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters.
    corecore