
2021Publication Year

2023-09-21T14:22:41ZAcceptance in OA@INAF

SpectraPyTitle

FUMANA, MarcoAuthors

10.20371/inaf/sw/2021_00001DOI

http://hdl.handle.net/20.500.12386/34396Handle

SpectraPy Documentation
Release 1.0.1

Marco Fumana

Aug, 2021

CONTENTS:

1 SpectraPy introduction 1

1.1 Acknowledging or citing SpectraPy . 1

1.1.1 In publications . 2

1.1.2 In projects or presentations . 2

2 SpectraPy installation procedure 3

2.1 Installing Prerequisites . 3

2.2 Install SpectraPy . 3

3 Instrument configuration 5

3.1 Detector . 5

3.2 Grism . 5

3.3 Files . 6

3.4 Description . 6

3.5 The icf files . 6

4 Mask description 9

4.1 Mask utility scripts . 9

5 Models 11

5.1 Optical Model . 11

5.2 Curvature Model . 12

5.3 Inverse Dispersion Solution Model . 13

6 Catalogs 15

7 Models calibration 17

7.1 Optical Model calibration . 17

7.1.1 The longslit case . 21

7.2 Curvature Model calibration . 23

7.2.1 The longslit case . 25

7.3 Inverse Dispersion Solution calibration . 27

7.3.1 The global mode . 28

7.3.1.1 Spectra slicing . 30

7.3.2 The interactive mode . 31

7.3.3 The longslit case . 33

8 Model Data Tuning 37

8.1 Curvature Model data tuning . 37

8.1.1 The longslit case . 39

8.2 Inverse Dispersion Solution data tuning . 40

i

8.2.1 The longslit case . 42

9 Spectra Extraction 43

9.1 The Extraction Table . 43

9.2 Extraction Table rectification . 44

9.3 Check the Wavelength Solution . 45

9.4 Spectra Extraction . 47

9.5 Spectra Extraction Adjustment . 49

ii

CHAPTER

ONE

SPECTRAPY INTRODUCTION

SpectraPy is a Python3 library, which collects algorithms and methods for data reduction of astronomical spectra

obtained by a through slits spectrograph.

The library is designed to be spectrograph independent. It comes with a set of already configured spectrographs, but

it can be easily configured to reduce data of other instruments.

Current implementation of SpectraPy is focused on the extraction of 2D spectra: it produces wavelength calibrated

spectra, rectified for instrument distortion. The library can be used on both longslit (LS) and multi object spectrograph

(MOS) data.

To achieve the spectra extraction, the main components used by the library are:

1. the Instrument configuration file

2. the Mask description file

3. one set of geometrical Models, which describes the spectra geometry on the raw frames.

Using these components the library is able to follow spectra distortions and extract rectified wavelength calibrated 2D

spectra.

The extraction steps, can be roughly summarized in:

1. Models calibration: the calibration of the geometrical models. If the instrument is stable enough, this

step is done once for all, for a given instrument configuration.

2. Model Data Tuning: the geometrical models must be adjusted on the current data. This steps performs

slightly adjustments on the data in use

3. Spectra Extraction: the extraction of the 2D spectra.

In this tutorial we will show how to create your Models from scratch, apply them to your data and obtain 2D spectra

extracted.

We will also illustrate how to handle different issues related to MOS ans LS data.

1.1 Acknowledging or citing SpectraPy

If you use SpectraPy in your work, we would be grateful if you could include an acknowledgment in papers and/or

presentations

1

https://www.python.org/

SpectraPy Documentation, Release 1.0.1

1.1.1 In publications

If you use SpectraPy for research presented in a publication, we ask that you please cite the SpectraPy DOI

10.20371/inaf/sw/2021_00001

1.1.2 In projects or presentations

If you are using SpectraPy as part of a code project, or if you are giving a presentation/talk featuring work/research that

makes use of SpectraPy and would like to acknowledge SpectraPy, we suggest using this badge

2 Chapter 1. SpectraPy introduction

https://www.ict.inaf.it/index.php/31-doi/133-sw-2021-01

CHAPTER

TWO

SPECTRAPY INSTALLATION PROCEDURE

2.1 Installing Prerequisites

• Python3.7 (or greater)

• Astopy

• Matplotlib

• PyDS9

• pyregion

• Cython

• DS9 (8.1 or greater)

We suggest to download and install Anaconda Python Distribution and update your $PATH environment variable to use

the proper python

In the BASH shell

> export PATH=${CONDA_INSTAL_DIR}/bin:$PATH

or in the TCSH shell

> setenv PATH ${CONDA_INSTAL_DIR}/bin:$PATH

And install the additional packages

> ${CONDA_INSTAL_DIR}/bin/pip install pyds9

> ${CONDA_INSTAL_DIR}/bin/pip install pyregion

Astropy and Cython are already included in the conda distribution.

2.2 Install SpectraPy

Extract files from the tar package

> tar -xvzf spectrapy-0.11.3.tar.gz

and use the proper python3 to install it

3

https://www.python.org/
https://www.astropy.org/
https://matplotlib.org/
http://hea-www.harvard.edu/RD/pyds9/
https://github.com/astropy/pyregion
https://cython.org/
http://ds9.si.edu/site/Home.html
https://www.anaconda.com/distribution/

SpectraPy Documentation, Release 1.0.1

> python3 setup.py install

SpectraPy is now installed and can be used from the python3 console

Note: To work with spectrapy, we suggest to use the ipython3 console (available in the conda distribution previously

installed). This is a powerful interactive shell, which provides a lot of facilities.

4 Chapter 2. SpectraPy installation procedure

https://ipython.org/

CHAPTER

THREE

INSTRUMENT CONFIGURATION

SpectraPy requires basic information about the instrument and the format of the data files. All these information are

collected in the instrument configuration file (icf), the file is formalized by one ini file organized in 4 different

sessions:

1. Detector

2. Grism

3. Files

4. Description (optional)

3.1 Detector

The detector section contains information related to the detectors geometry. The following information are

required by the library:

• pixel_scale [“/pixel]: the nominal pixel scale of the instrument

• xpixels: the number of pixels along the X axis

• ypixels: the number of pixels along the Y axis

3.2 Grism

The grism section defines the properties of the dispersion element:

• dispersion_direction: this keyword defines the dispersion direction, which goes from bluest

regions of the frame to reddest. Possible values of this keyword are:

1. LR: dispersion along X axis, from left to right

2. RL: dispersion along X axis, from right to left

3. BU: dispersion along Y axis, from bottom to top

4. LR: dispersion along Y axis, from top to bottom

• linear_dispersion [A/pixel]: the nominal linear dispersion of the grism

• reference_lambda: wavelength position of a bright isolate line near the nominal central wavelength of

the grism1.

1 Strictly speaking the reference_lambda is not a property of the grism, but it is a value required by the SpectraPy wavelength calibration

algorithm. During the calibration process, we will choose a bright isolated line (sky line or arc line) as reference point for the slit. Since the real

slit position is not visible on dispersed frames, this line will be used by SpectraPy as “ideal” slit position, and as reference point for the models.

5

https://en.wikipedia.org/wiki/INI_file

SpectraPy Documentation, Release 1.0.1

3.3 Files

Every instrument produces data in several FITS formats and data can be stored in extensions that are not the Primary

HDU. The files section is used by the library to retrieve data from the proper extension. The extensions can be defined

by name or by number2.

• data_hdu: extension containing science data. If not specified, the primary extension is used

• var_hdu: extension containing variance on data. If not specified, no variance is used.

• err_hdu: this is used when no variance is associated with data, but an error layer is provided3.

• flag_hdu: extension containing bit mask on data. Pixels with mask value > 0, will be masked out by SpectraPy

library during data calibration or data extraction. This layer can be used to mask out bad pixels, cosmic ray, . . .

3.4 Description

The Description section is not mandatory and it used just for human purposes. It just contains a description for user

3.5 The icf files

In the conf/instruments directory there are a set of already prepared instrument configuration files. Here we can

see an example of MODS1R/MODS2R instrument configuration file used in this manual.

[Description]

instrument = MODS1R/2R

grism = G670L

[Detector]

pixel_scale = 0.123

pixel_size = 0.015

xpixels = 8288

ypixels = 3088

[Grism]

(continues on next page)

2 The Primary extension is 0 (like astropy.io.fits does)
3 SpectraPy assumes var_hdu = err_hdu 2

6 Chapter 3. Instrument configuration

https://docs.astropy.org/en/stable/io/fits/

SpectraPy Documentation, Release 1.0.1

(continued from previous page)

dispersion_direction = RL

#A/pixels

linear_dispersion = 0.8

#Ne line

reference_lambda = 6929.47

[Files]

data_hdu = Primary

3.5. The icf files 7

SpectraPy Documentation, Release 1.0.1

8 Chapter 3. Instrument configuration

CHAPTER

FOUR

MASK DESCRIPTION

The mask description files (mdf files) are used by SpectraPy to know the geometry of the slits mask and to locate spectra

on the raw frames. The mdf file is an ASCII file, containing the following columns1:

1. ID the unique slit ID2.

2. DIMX and DIMY the dimensions in millimeters of the slit.

3. X and Y the position (always in millimeters) of the center of the slit in the field of view.3

4. ROT the rotation angle of the slit. Rotation angle is clockwise and starts from cross-dispersion direction.

5. WID and LEN the width and length of the slit in arcsec. These entries are not mandatory, some instruments don’t

provides them. In case these information are not available the value must be 0.4

6. REF the reference slit flag. This value is 1 in case the slit is a reference. Reference slits can be ignored during

data calibration and extraction

Here an example of one mdf of a MODS mask

#ID DIMX DIMY X Y ROT WID LEN REF

49 0.720 3.600 -73.62 -86.11 0.0 1.2 6.0 0

85 0.720 6.000 -40.32 -91.09 0.0 1.2 10.0 0

119 0.720 3.600 -86.62 -48.47 40.0 1.2 6.0 0

Ref1 2.400 2.400 -20.70 74.29 0.0 4.0 4.0 1

4.1 Mask utility scripts

SpectraPy provides a set of scripts (stored in the scripts directory) to automatically create mdf files for VIMOS,

LUCI and MODS data. Available scripts are:

1. vimos2mdf.py

2. luci2mdf.py

3. mods2mdf.py

The vimos2mdf.py and luci2mdf.py require in input the fits data file, because in the VIMOS and LUCI cases, mask

geometry is described in the header of the files.

1 No empty entries are allowed
2 SpectraPy handles IDs as strings.
3 The library assumes the center of this coordinates system in the center of the FOV.
4 unlike the DIMX and DIMY parameters WID and LEN are not oriented along the X,Y axes, but they are oriented according with the grism dispersion

direction: LEN is the slit length along the cross-dispersion direction, WID is the width along the dispersion direction

9

SpectraPy Documentation, Release 1.0.1

Since no mask information is available in the header of MODS files, MODS scripts takes in input the mms (the file

obtained by the MODS mask preparation tool).

Finally, for LUCI and MODS spectrograph, a set of already prepared LS masks is available in the conf/masks direc-

tory.

10 Chapter 4. Mask description

CHAPTER

FIVE

MODELS

SpectraPy algorithms rely on 3 geometrical model:

1. The Optical Model, used to describe the geometrical distortions along the FOV

2. The Curvature Model, used to describe the spectra displacement with respect to the ideal dispersion direc-

tion, perfectly aligned along pixels

3. The Inverse Dispersion Solution Model, which describes the wavelength to pixel relation

5.1 Optical Model

The Optical Model (aka OPTModel) describes the optical distortion in the FOV and it converts mask slit positions (in

millimeters) into pixels on the detector. The Optical model does not dependent on the grism in use, since it just locates

the reference lambda (the virtual slit for SpectraPy) on the detector ignoring any information about dispersion.

The model is defined by a pair of global 2D polynomials: one for the x and one for the y.

In the current implementation X and Y polynomials have the same shape.

x[pix] =

N∑︁

i=0

M∑︁

j=0

Xi,jx
i
[mm]y

j

[mm]

y[pix] =

N∑︁

i=0

M∑︁

j=0

Yi,jx
i
[mm]y

j

[mm]

This model is used to describe the distorted images in a rectified coordinate system.

11

SpectraPy Documentation, Release 1.0.1

5.2 Curvature Model

Due to optical distortions on real data, spectra are not perfectly aligned along the pixels and these distortions change

within the FOV.

The Curvature Model (aka CRVModel) describes the deviation of the spectra traces, with respect to the perfect straight

line (horizontal in the case of LR or RL dispersion directions and vertical in the case of BU or UB dispersion directions).

The model estimates this displacement (in pixel) along the cross dispersion direction.

For each slit, one mono dimensional polynomial is used to describe the displacement along the cross dispersion direction

∆c, starting from the slit reference position (located by the Optical Model)

∆c[pix] =

N∑︁

i=0

cx,y,i∆di[pix]

The ∆d is the displacement with respect to the reference lambda position in pixel (x, y).

Each slit has own set of cx,y,i coefficients, different slit by slit, because each slit is in a difference position in the FOV.

SpectraPy uses a global model to describe coefficients variation along the FOV.

The local cx,y,i coefficients are obtained by the evaluation of this global model at the reference lambda position on

detector.

cx,y,i =

N∑︁

h=0

M∑︁

k=0

Ci,h,kx
h
[pix]y

k
[pix]

Note: This approach has the advantage to be mask independent. Once we have calibrated the global CRVModel, if

the instrument is stable, we can apply the same model to describe every masks.

12 Chapter 5. Models

SpectraPy Documentation, Release 1.0.1

5.3 Inverse Dispersion Solution Model

Once the spectra are located on Detector (Optical Model) and geometrically described (Curvature Model) the wave-

length calibration of the 2D can be carried out.

The Invese Dispersion Solutions Model (aka IDSModel) is the model used to obtain the relation between pixel positions

and wavelengths. It moves along the curve described by the combination of OptModel and CRVModel and it associates

expected wavelength value to pixels of this curve.

The IDSModel mathematical description is quite similar to the CRVModel: for each slit, one mono dimensional poly-

nomial locates the wavelength position . Since each slit is in a difference position in the FOV, and distortions changes

within the FOV, each slit has own set of dx,y,i coefficients.

dx,y,i =

N∑︁

h=0

M∑︁

k=0

Di,h,kx
h
[pix]y

k
[pix]

The set of dx,y,i coefficients are used to measure the wavelength with respect to the reference lambda position.

∆d[pix] =

N∑︁

i=0

dx,y,i(λ− λref)
i

The ∆d is the displacement with respect to the reference lambda position located at the pixel (x, y).

Even in this case a global 2D polynomial is used to describe the coefficients variation along the FOV and the local

cx,y,i are obtained by the evaluation of this global model

5.3. Inverse Dispersion Solution Model 13

SpectraPy Documentation, Release 1.0.1

14 Chapter 5. Models

CHAPTER

SIX

CATALOGS

Catalog files are ASCII files containing expected lines positions, lines starting with # are ignored. These file are used

both during Inverse Dispersion Solution calibration and during IDSDataCalib to know where emission lines should

be.

In the directory conf/catalogs there are a set of already prepared catalogs, or we can create our custom catalog,

according to our needs.

The catalog file, must contain 3 columns:

• pos: the expected line position (in Angstrom)

• label: the line name, a label to identify it (just for human purposes)

• flag: the line flag internally used by SpectraPy (positive integer)

Here, as example, a part of a line catalog provided by SpectraPy

11591.684 sky 1

11627.846 sky 1

11650.746 sky 1

11696.348 sky 1

11716.151 sky 1

12007.078 sky 0

12030.885 sky 0

12055.878 sky 1

12121.5 double 2

12196.386 sky 1

The flag is an integer number used by SpectraPy, in the current version of SpectraPy, just 3 flags are allow: 0, 1, 2.

• 0 if the line is faint or very close to a stronger line.

• 1 these are bright isolated lines

• 2 these are lines very close and not resolved by the instrument, but they can be useful to anchor the solution in

regions of the spectrum with few lines

During the Inverse Dispersion Solution calibration, the positions of the lines in the frame are manually decided by user.

At this stage we can use all the lines in the catalog, in case of doubts we can remove the DS9 regions related with the

ambiguous line. Different flags are plotted with different colors:

• 0 (faint lines): pink

• 1 (reliable lines): green

• 2 (not resolved lines): red

15

SpectraPy Documentation, Release 1.0.1

The Inverse Dispersion Solution calibration procedure is totally automatic, at this stage only the reliable lines (the

lines with flag=1) will be used. SpectraPy automatically discards other lines, to obtain one solution as much reliable

as possible.

16 Chapter 6. Catalogs

CHAPTER

SEVEN

MODELS CALIBRATION

In the following sections, we will see how to use SpectraPy to obtain the final 2D extracted spectra. As training example

we will use a MODS1R MOS frame. In some cases one longslit LUCI frame is also used to highlight the differences

between MOS and LS cases.

7.1 Optical Model calibration

In order to define the distortions map of the FOV, we must initialize the Optical Model. This step requires: the instru-

ment configuration file and the mask description file. We will start by loading an arc lamp frame for MODS1R

>>> # The MODS instrument configuration file

>>> mods1r = "conf/instruments/mods_G670L.icf"

>>> # The mask description file

>>> mods_mask = "examples/data/mods1r/ID532016.mdf"

>>> mods_arc = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

We must initialize the ModelsCalibration class: this is the class used to calibrate all the models.

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> calib = ModelsCalibration(mods1r, mask=mods_mask)

The last call opens a DS9 instance used by SpectraPy to display images and regions. All the calibration processes

consist in moving and adjusting regions on the frame in order to compute proper models. The idea is that the

ModelsCalibration instance shows us the current models solutions plotting regions on the DS9 frame. We can

adjust these regions and refit the model using the new regions positions.

First of all, we must create a new Optical Model from scratch, because no OPTModel is yet available for this instrument

configuration. In this case, we choose to describe the OPTModel with a polynomial of order 2 in both (x and y)

directions.

>>> opt = calib.new_opt_model(2, 2)

OPTModel assumes the mask oriented with the X axis horizontal (from left to right) and Y axis vertical (from bottom

to up). In the next figure we show on the left a dispersed frame, on the right the mask as described by the Optical

Model.

17

http://ds9.si.edu/site/Home.html

SpectraPy Documentation, Release 1.0.1

As we can see, in this case the mask and the image don’t match, slits are not in the expected position, we can check this

discrepancy looking at the tilted slit or at the reference square slit.

Due to instrument particularities and optical reflections, this initial assumption (with the axes oriented like in the picture

above) can be not true for all the instruments. To solve this problem, the OPTModel can be flipped on both directions

by the methods: flipx and flipy. In this MODS1R case, we flipped the model vertically.

>>> # For optical reasons we must (at least in MODS) flip the model along the Y axis

>>> opt.flipy()

The OPTModel locates the mask slits on the FOV. Since we are working with dispersed images, slits are not visible on

the frame. For this reason we will use an arc frame to tune the model: we will use the lambda reference position on the

frame as virtual slit.

Note: As lambda reference position we suggest to choose a bright isolated line in the mid region of the dispersion

range.

>>> calib.load_image(mods_arc)

>>> calib.plot_opt_model()

The arc image and the expected slits as green boxes will be displayed in the DS9 viewer.

18 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

The first time, usually slits will not be in the proper position, we have to tune the model moving1 these slits on the

expected reference line position2, using the standard DS9 regions commands

1 In case regions are frozen and you are not able to move them, select the Region option in the DS9 Edit menu.
2 In case you want follow the exercise, without losing time moving regions, you can use already prepared region file in examples/data/mods1r/

regions/opt.reg. You must delete all current regions and replace them with regions contained into the file.

7.1. Optical Model calibration 19

SpectraPy Documentation, Release 1.0.1

Once we have moved all the boxes over the correct lines, we must recompute the model solution, refitting it. The library

reads from DS9 the current position of the lists, and adjust the model according with these positions.

Note: In case we don’t want to use some slit and discard it from the fits, we can just remove this region from DS9.

>>> calib.fit_opt_model()

We can visually check the results, plotting again of the recomputed model on the frame in use.

>>> calib.plot_opt_model()

20 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

If slits regions, still remain in the proper position, the model is good and we can save it.

>>> opt.writeto("examples/tmp/MODS1R.opt", overwrite=True)

In case the model does not match the proper slit positions, we can try to increase the polynomial order of the model

and repeat the previous operations.

7.1.1 The longslit case

In this section, we will calibrate the optical model for a longlist case. For this example we will use LUCI1 frames

acquired with a slit 0.75” width and 60” long, using the low resolution grism. The main difference is that the number

of slits in the FOV is just 1.

>>> luci_mask = "conf/masks/luci_LS_0.75.mdf"

>>> luci1 = "conf/instruments/luci_G200LoRes_1.93_1.8.icf"

>>> luci_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

In this case we are using a science frame, since in the instrument configuration file we choose an OH sky line as

reference position.

Again we create the OPTModel from scratch and display the slit.

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> calib = ModelsCalibration(luci1, mask=luci_mask)

>>> calib.load_image(luci_file)

(continues on next page)

7.1. Optical Model calibration 21

SpectraPy Documentation, Release 1.0.1

(continued from previous page)

>>> opt = calib.new_opt_model(1, 1)

>>> calib.plot_opt_model(edit=True)

In this case we have just one slit, and the slit mutal positions can not be used to derive the scaling factor of the Optical

Model. You can see how the nominal scale factor is not enough accurate since the slit size (green box on the frame)

doesn’t fit the size on the dispersed frame.

So we have to adjust both the slit position and the slit dimensions. This is the reason why we set the parameter

edit=True. With this flag ON we can move also the slit corners to fit the real slit position.3

Note: Be careful: slit is described by a polygon. DON’T ADD corners to this polygon, just move the already existing

corners, otherwise the fit will fail!

This resizing allows us to calibrate the OPTModel scale. Once done we can refit the models

>>> calib.fit_opt_model()

And save the fit result

>>> opt.writeto("examples/tmp/LUCI1.opt", overwrite=True)

3 Already prepared region file is available in examples/data/luci1LoRes/regions/opt.reg

22 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

7.2 Curvature Model calibration

Once the OPTModel has been calibrated, i.e. the reference lambda is properly located for each list, we can handle the

spectra curvatures.

The Curvature Model calibration can be performed either using the previous ModelsCalibration class instance or

initializing a new class, loading the saved OPTModel.

>>> #The variables already initialized

>>> mods_mask = "examples/data/mods1r/ID532016.mdf"

>>> mods1r = "conf/instruments/mods_G670L.icf"

>>> mods_arc = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> opt = "examples/tmp/MODS1R.opt"

>>> calib = ModelsCalibration(mods1r, mask=mods_mask, opt=opt)

Like in the OPTModel case, we create a Curvature Model from scratch and display it

>>> crv=calib.new_crv_model(1, 2, 2)

The previous line of code creates a curvature model which is locally described by a straight line, i.e. each spectra trace

is described by one 1st order polynomial. The coefficients of these lines change along the FOV, i.e. the curvature of

each trace is slightly different spectrum by spectrum. In this example we decide to describe this variation by a 2D

polynomial of order 2 by 2.

Since we want to follow the trace of the spectra, the best frame to use for the CRVModel is a through slit flat, which

shows clearly the trace edges of the spectra.

>>> mods_flat="examples/data/mods1r/mods1r.20180121.0067.fits.bz2"

>>> calib.load_image(mods_flat)

>>> calib.set_trace_limits(800, 800)

The CRVModel, starting from the reference position defined by the OPTModel, follows the geometry of the spectra both

in the blue and the red directions.

The last line of code defines (in pixels) the tracing range we are going to calibrate. In this case we decide to calibrate

800 pixels (both directions) along the dispersion direction around the reference line4.

>>> calib.plot_crv_model(9)

In this tutorial we decided to use 9 points (marked by green crosses) equally spaced along these 1600 pixels.

4 The first parameter of the set_trace_limits defines the number of pixels in the blue direction, the second parameter the pixels in the red

7.2. Curvature Model calibration 23

SpectraPy Documentation, Release 1.0.1

DS9 will show the slits position (the blue region) and 9 crosses for each slits along the expected position of the spectra

traces. Like we did for the OPTModel, we must adjust in DS9 the crosses along the left side the spectra traces.5

By default only the left edges of the spectra are used to calibrate the CRVModel. The left and right edges of the spectra

are defined by SpectraPy on frames with BU dispersion direction (frames where the dispersion direction goes from

bottom to up). According with that: in the frames with UB the dispersion direction the left edges for SpectraPy are the

right edges on the frames, if the dispersion direction is LR is the upper side is the left edge and in the RL case the left

edge is the lower edge on the frame.

Note: Don’t be afraid to delete some crosses if they follow out of frame or they are in a region where the spectrum

signal is too faint, the fitting procedure will use only available crosses

>>> calib.fit_crv_model()

>>> calib.plot_crv_model(20)

Once done, we can refit the model and check it again. During check we can increase the number of points (20 in this

case) to better visualize the new solution

5 An already prepared region file is available in examples/data/mods1r/regions/crv.reg

24 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

If we are satisfied by this solution, we can save it pass on to the IDSModel calibration.

>>> crv.writeto("examples/tmp/MODS1R.crv", overwrite=True)

Otherwise we can increase the degree of the polynomial and repeat the previous steps.

Note: The degree of the local polynomial (1 in this example) can be increased according with the number of crosses

used for each slit.

Note: The degrees of the global 2D polynomial is strictly related to the number of slit in the FOV and we MUST take

into account of the slit number when we decide its degree.

7.2.1 The longslit case

The longlist case shows a single slit very extended along the cross dispersion direction. Due to optical distortions, the

spectra produced by this kind of slit could have different sizes in the blue and in the red area. Namely the distance

between the left and right edge in blue region slightly differs from the one in the red region.

7.2. Curvature Model calibration 25

SpectraPy Documentation, Release 1.0.1

SpectraPy allow us to address this issue fitting both edges of the spectra.

>>> luci_mask = "conf/masks/luci_LS_0.75.mdf"

>>> luci1 = "conf/instruments/luci_G200LoRes_1.93_1.8.icf"

>>> luci_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> opt = "examples/tmp/LUCI1.opt"

>>> calib = ModelsCalibration(luci1, mask=luci_mask, opt=opt)

>>> crv=calib.new_crv_model(2, 0, 1)

The last call defines a local curvature model of the 2nd order, described by a global 2D model of:

• order 0 on X axis: we have just a single slit, it can not change in the FOV moving along X axis

• order 1 on Y axis: we want a model capable of fitting both edges of the spectrum, i.e. this model can change

the spectra curvature along the cross dispersion direction (the Y axis)

>>> calib.set_trace_limits(1000, 1000)

>>> calib.load_image(luci_file)

>>> calib.plot_crv_model(7, pos=(0, 1))

26 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

Unlike the MOS case, we want to plot both edges of the spectra, this is achieved by the pos parameter of the

plot_crv_model methos.

SpectraPy describes the slit with a Bezier curve parameterized by a real value t with goes from 0 up to 1. So the left

edge of the slit is the slit at t=0 and the right edges is the slit at t=1. The parameter pos=(0,1) in the plot_crv_model

call, define which region of the slit we want trace (the edges in this case).

Note: pos parameter can be any number between 0 and 1, that means SpectraPy can show you tracing on every point

of the slit. This feature can be useful to work out with very problematic data.

In this case we must adjust both edges of the slit and refit the models6

>>> calib.fit_crv_model()

And check the results

>>> calib.plot_crv_model(100, pos=(0, 0.325, 1))

And finally, as usual, save the model

>>> crv.writeto("examples/tmp/LUCI1.crv", overwrite=True)

7.3 Inverse Dispersion Solution calibration

Once the spectra have been located on detector by the Optical Model and geometrically described by the Curvature

Model, the wavelength calibration of the 2D spectra can be carried out.

The Inverse Dispersion Solution Model is the model which, following the spectrum curvatures, gives us a relation

between wavelength (in Angstrom) and detector pixels.

Like for the CRVModel, the IDSModel can be calibrated either using the previous ModelsCalibration instance or

initializing a new class which loads the already saved OPTModel and CRVModel instances.

6 An already prepared region file is available in examples/data/luci1LoRes/regions/crv.reg

7.3. Inverse Dispersion Solution calibration 27

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

SpectraPy Documentation, Release 1.0.1

>>> #The variables already initialized

>>> mods_mask = "examples/data/mods1r/ID532016.mdf"

>>> mods1r = "conf/instruments/mods_G670L.icf"

>>> mods_arc = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> opt = "examples/tmp/MODS1R.opt"

>>> crv = "examples/tmp/MODS1R.crv"

>>> calib = ModelsCalibration(mods1r, mask=mods_mask, opt=opt, crv=crv)

The mathematical description of the IDSModel is similar to the CRVModel: for each slit, one mono dimensional poly-

nomial locates the wavelength positions along the curves described by the CRVModel . The FOV variations of the

coefficients of this polynomial are described by a 2D polynomial.

We start creating the IDSModel from scratch

>>> ids = calib.new_ids_model(3, 2, 2)

In this way, we created a model described locally by a 3th order polynomial and globally by 2x2 bi-dimensional poly-

nomial.

In this example for the IDSModel calibration, we use the arc frame

>>> calib.load_image(mods_arc)

>>> NeHg_cat="conf/catalogs/NeHg_hr.dat"

In addition to the arc frame, we need a line catalog to know the expected arc lines position. Catalogs are ASCII files

containing line positions, their formats is described the Catalogs paragraph.

Note: Each arcs lamps, can be acquired in different frames separately. During IDS model calibration, it could be

useful to add together frames of different arc lamps, in order to span a wider wavelength range. In case we provide a

list of files to the load_image method, SpectraPy sums them together and displays the stacked image in DS9.

7.3.1 The global mode

Now we can start with the model calibration. First of all we will show the global approach, by this strategy we will

calibrate all the MOS slits at the same time.

>>> calib.plot_ids_model(NeHg_cat)

As we can see in DS9 we will see the expected DS9 lines positions. Since lines catalogs are related to a specific

instrument configuration, they can span a wavelength range larger than range covered by the data, this is the reason why

we see line region positions of of the frame.

Spectrapy allow us to load just a part of the catalog, using only lines in the relevant range. This is done by the wstart

and wend parameter. In this case we ca limit the lines to the MODS red regions

>>> calib.plot_ids_model(NeHg_cat, wstart=5000., wend=10000.)

28 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

The method plot_ids_model displays the frame and over it, green arrows on the expected line positions. For each

list, we must move the arrowhead in the proper position and then refit the model.7 In this figure we can see how arrow

positions don’t match the line positions. The adjustment is not a simple global shift, we are suppose to adjust the model

slit by slit, since the distortions are different along the FOV. Moreover each arrow position on the slit, must be moved

of a different amount.

Note: During this adjustment, don’t be afraid to delete lines which can not be properly adjusted, e.g. lines which fall

out of frame.

>>> calib.fit_ids_model()

After the fit recomputing, the line positions according with the new model will be plotted.

In case the new computed model well fits the line positions, we can save it.

7 Already prepared region file is available in examples/data/mods1r/regions/ids_global.reg

7.3. Inverse Dispersion Solution calibration 29

SpectraPy Documentation, Release 1.0.1

>>> ids.writeto("examples/tmp/MODS1R.ids", overwrite=True)

Otherwise we can change the orders of the model and repeat the previous steps.

7.3.1.1 Spectra slicing

The first time we are dealing with new data, wavelength calibration can be a very tricky exercise. We have to label

emission lines in the raw frame, associating to each of them the proper wavelength value. In literature an on the web,

we can find very useful references to complete this task .

For the optical range we can suggest atomic data tables (National Institute of Standards and Technology) or for the near

infrared the Rousselot et al. article could be a very useful reference for the OH lines positions.

We can find plots of lamp spectra already calibrated, like this on the LBTO page.

The comparison of this plots with 2D raw frames can be not so straightforward. For this reason SpectraPy allow us to

obtain a 1D slice of a single slit using the plot_slice method. We each slit we can cut a slice passing the slit ID to

the ModelsCalibration.plot_slice method. In the following example we are plotting a slice for the slit 49.

>>> %pylab

>>> calib.plot_slice('49')

30 Chapter 7. Models calibration

https://physics.nist.gov/PhysRefData/Handbook/atomic_number.htm
https://ui.adsabs.harvard.edu/abs/2000A&A...354.1134R
https://sites.google.com/a/lbto.org/mods/

SpectraPy Documentation, Release 1.0.1

In this case this auxiliary plot shows the 1D slice of the slit 49 allowing us to compare the reference plot, with this slice

and adjust properly the regions on the raw frame.

7.3.2 The interactive mode

In some cases, adjusting the entire mask could be very tricky. For example if we are dealing with a very crowded mask,

this approach could not be the best choice.

For this reason, beside this global approach, the SpectraPy library provides also an interactive mode. This mode

allow us to calibrate the model slit by slit.

The interactive mode starts from the slit closest to center of the FOV (where the distortions should be smaller), so we

can focus only on this slit and adjust the solution for it; once done we can switch to the next slit, the slit closest to the

current one. Moving to the next slit, SpectraPy will apply to the next slit the solution computed on the previous slit.

Since the 2 slits are close each other, the new solution is normally reasonable even for this slit. In this way the manual

adjustments to be made are quite small.

We will show this methodology by an example. We starts reading the already computed model and creating the IDS

model from scratch, like we did in the global approach.

>>> calib = ModelsCalibration(mods1r, mask=mods_mask, opt=opt, crv=crv)

>>> calib.load_image(mods_arc)

>>> NeHg_cat="conf/catalogs/NeHg_hr.dat"

>>> ids = calib.new_ids_model(3, 2, 2)

and start the iteration process

>>> calib.ids_iter(NeHg_cat, wstart=5000.)

SpectraPy will display in DS9 only the central slit.

7.3. Inverse Dispersion Solution calibration 31

SpectraPy Documentation, Release 1.0.1

We must adjust the solution for this slit8; once done, we can switch to the next slit, by calling the next method

>>> calib.next()

Calling next SpectraPy performs the following actions:

• it fits the solution for the current slit already adjust

• it applies this new solution to the next slit

• it splits DS9 in 2 frames: in upper frame (or left in case dispersion is bottom-up) there is the slit already adjusted

as reference, in the lower frame the new slit to adjust

We must work on this second frame and adjust the solution for this new slit. Once done we can iterate the process

calling again the next() method.

When we reach the last slit and adjusted it, we can stop the iteration process and fit the overall model. This is done

calling the stop_iter method.

>>> calib.stop_iter()

Calling stop_iter we automatically perform the fit of the IDSModel and restore the visualization with the whole

single frame

8 The already prepared region file is available in examples/data/mods1r/regions/ids120.reg. One file for each region is available in the

same directory.

32 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

If we are satisfied of the solution, we can save the model.

>>> ids.writeto('/tmp/MODS1R.ids', overwrite=True)

Note: In case we need to go back and refine the solution of some slit, the prev method is also available .

Note: Every time we go back and forward with the prev and next method, the current slit solution is refitted by

default. In case we may want to browse the slits solutions, without refit their solutions, we can call call prev and

next methods with the parameter fit=False.

Note: In case we want stop the iteration without refit the model, we can also call the stop_iter method with the

parameter fit=False.

7.3.3 The longslit case

Unlike the MOS case, in the longlist case the slit can be quite long, mask flexures and instrument distortions can produce

spectrum with curved lines like in frame below. That means the solution of the IDSModel is different in the center of

the slit with respect of to the edges.

To address this issue, SpectraPy allows to describe the dispersion solutions, defining the IDSModel solution in several

parts of the slits .

>>> luci_mask = "conf/masks/luci_LS_0.75.mdf"

>>> luci1 = "conf/instruments/luci_G200LoRes_1.93_1.8.icf"

>>> luci_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

>>> from spectrapy.modelscalib.calib import ModelsCalibration

>>> opt="examples/tmp/LUCI1.opt"

>>> crv="examples/tmp/LUCI1.crv"

>>> calib = ModelsCalibration(luci1, mask=luci_mask, opt=opt, crv=crv)

7.3. Inverse Dispersion Solution calibration 33

SpectraPy Documentation, Release 1.0.1

We decide to generate a local IDSModel described by 3rd order polynomial, which does not change along the X axis

(we have just 1 slit), but which changes along the cross dispersion direction since we want to follow the line curvatures

>>> ids = calib.new_ids_model(3, 0, 2)

Now we can start the calibration procedure, splitting the slit in many pieces (7 in this example)

>>> sky_cat = "conf/catalogs/sky_lr.dat"

>>> calib.load_image(luci_file)

>>> calib.plot_ids_model(sky_cat, wstart=15000., nsplit=7)

The same line position is showed 7 times along the slit. Adjusting the line position for each piece, we will instruct the

model to follow the lines curvatures9

9 An already prepared region file is available in examples/data/luci1/regions/ids.reg

34 Chapter 7. Models calibration

SpectraPy Documentation, Release 1.0.1

Once done, we refit the model and check the solution on the frame. We can also increase the number of slits for a better

check.

>>> calib.fit_ids_model()

>>> calib.plot_ids_model(sky_cat, nsplit=20)

And save the model

>>> ids.writeto("examples/tmp/LUCI1.ids", overwrite=True)

7.3. Inverse Dispersion Solution calibration 35

SpectraPy Documentation, Release 1.0.1

36 Chapter 7. Models calibration

CHAPTER

EIGHT

MODEL DATA TUNING

In the ideal case, well calibrated models are ready to be used on real data. In the real world, instrument distortions, mask

position uncertainty and other instrument effects affect the data in slightly different ways, producing slightly different

distortions on a night by night basis. For this reason models must be adjusted on real data, this is what we call models

data tuning.

Unlike before, now the computations of the spectra edges as well the line positions for the wavelength calibration, are

automatically performed on real data and no more on the base of region files defined by the user.

Since we are working only with dispersed data, this kind of tuning can not be performed on the Optical Model, but

only on Curvature Model and Inverse Dispersion Solution Model.

In these section we will see how SpectraPy performs this tuning on real data.

8.1 Curvature Model data tuning

The accurate calibration of the spectra curvatures is performed by SpectraPy fitting the edges of the spectra on the

frames. These are the main steps of the edges computing:

1. SpectraPy uses, as first guesses for the edge location, the solution of Curvature Model obtained by the Models

calibration procedures

2. then it moves along this curve, cutting thumbnails containing the edge of the spectrum (blue boxes in the figure)

3. the library collapses these thumbnails along the dispersion direction and computes edge profile (the red curve in

the figure) of each thumbnail

4. these edge values are used by SpectraPy to fit the model

37

SpectraPy Documentation, Release 1.0.1

The TraceCalibration class is the object used by SpectraPy, to fit the edge of the spectra trace

>>> mods_mask = "examples/data/mods1r/ID532016.mdf"

>>> mods1r = "conf/instruments/mods_G670L.icf"

>>> mods_flat = "examples/data/mods1r/mods1r.20180121.0067.fits.bz2"

>>> opt = "examples/data/mods1r/models/MODS1R.opt"

>>> crv = "examples/data/mods1r/models/MODS1R.crv"

>>> from spectrapy.datacalib.tracingcalib import TraceCalibration

>>> trace_calib = TraceCalibration(mods1r, mods_mask, opt, crv)

Now we must define the limits of the tracing computations, and the sizes of the thumbnails

>>> # Define the trace limits

>>> trace_calib.set_trace_limits(1500, 3000)

>>> # Load the image

>>> trace_calib.load_image(mods_flat)

>>> # Define the thumbnails sizes and perform the computation

>>> trace_calib.compute_spectra_traces(slit_win=20, pix_bin=50, var=False)

In this example we selected a range of 1500 pixels in the blue and 3000 in the red. We decided to cut thumbnails every

50 pixels along the dispersion direction (the pix_bin parameter) and each thumbnail is 20 pixels large (along the cross

dispersion direction). For each thumbnail the library creates the profile and computes the edge of this profile.

38 Chapter 8. Model Data Tuning

SpectraPy Documentation, Release 1.0.1

For visual check, SpectraPy displays in DS9 the computed edges. It places green crosses on the computed edge posi-

tions. It also shows red crosses in case of failures.

Like we did during Models calibration, in case we are satisfied by the results, we can use these positions to recompute

the CRV model (the red crosses will be excluded from computation)

>>> trace_calib.fit_crv_model()

check the result

>>> trace_calib.plot_crv_model(50)

and save the new model

>>> trace_calib.writeto("examples/tmp/MODS1R.data.crv", overwrite=True)

Note: In case your instrument is stable enough, i.e. through slits flats match science data, we suggest to use through

slits flats to compute spectra curvatures, because the spectra edges are sharper with respect to science data

8.1.1 The longslit case

Like we did during Models calibration, in the longslit case we want to fit both edges. This is done using the right flag

in the compute_spectra_traces call.

>>> luci_mask = "conf/masks/luci_LS_0.75.mdf"

>>> luci = "conf/instruments/luci_G200LoRes_1.93_1.8.icf"

>>> sc_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

>>> opt = "examples/tmp/LUCI1.opt"

>>> crv = "examples/tmp/LUCI1.crv"

>>> from spectrapy.datacalib.tracingcalib import TraceCalibration

>>> trace_calib = TraceCalibration(luci, luci_mask, opt, crv)

(continues on next page)

8.1. Curvature Model data tuning 39

SpectraPy Documentation, Release 1.0.1

(continued from previous page)

>>> trace_calib.set_trace_limits(950, 1000)

>>> # We are using a science frame

>>> trace_calib.load_image(sc_file)

>>> # The right flag is now set True

>>> trace_calib.compute_spectra_traces(slit_win=20, pix_bin=50, right=True)

In this example, we also show how to to use a science frame to fit the trace edges instead of trough slit flat.

>>> trace_calib.fit_crv_model()

Like in the MOS case we can check the results and save them

>>> trace_calib.plot_crv_model(100, pos=(0, 0.325, 1))

>>> trace_calib.writeto("examples/tmp/LUCI1.data.crv", overwrite=True)

Note: The right=True flag, could be used also in the MOS case. It could be useful when we are working with

crowded masks, where slits are very close one to the other, and the edges are not well defined. The right flag, doubles

the traces (for each slit we have 2 edges now), increasing the model constraints, and this could help the fitting procedure.

8.2 Inverse Dispersion Solution data tuning

The wavelength solution is tuned on real data, searching the real line positions on frames.

The Optical Model gives us the slit extension on the frame along the cross dispersion direction, i.e. for each slit we

know how large is the 2D spectrum.

To compute the wavelength solution, SpectraPy cuts N slices of 2D spectrum: one slice for each pixel along the cross

dispersion direction. Namely, if the 2D spectrum is 23 pixels large, SpectraPy will create 23 slice of the 2D spectrum.

SpectraPy can move along the slice following the Curvature Model Solution and it handles each slice like a 1D spectrum.

Moving along the slice it computes the real line positions (relying on one line catalog). Then it computes the slice

wavelength solution using these measured lines positions.

In details, for each slice:

• SpectraPy picks nominal line positions from the input catalog

• It uses the Inverse Dispersion Solution Model solution (coming from Models calibration) as first guess to

move on the expected line position

• It measures the real line position.

• for each slice the library refits the 1d polynomial using these real positions.

The WavelengthCalibration class, is the tool used to achieve this calibration. The final product of this procedure

is a structure called Extraction Table, saved as FITS table

>>> # The last CRV Module

>>> crv = "examples/tmp/MODS1R.data.crv"

>>> opt = "examples/data/mods1r/models/MODS1R.opt"

(continues on next page)

40 Chapter 8. Model Data Tuning

SpectraPy Documentation, Release 1.0.1

(continued from previous page)

>>> mods_mask = "examples/data/mods1r/ID532016.mdf"

>>> mods1r = "conf/instruments/mods_G670L.icf"

>>> # The first guess

>>> ids = "examples/data/mods1r/models/MODS1R.ids"

>>> from spectrapy.datacalib.wavelengthcalib import WavelengthCalibration

>>> wave_calib = WavelengthCalibration(mods1r, mods_mask, opt, crv, ids)

Now we must define the range of lambda we want to calibrate (in Angstrom)

>>> wave_calib.set_lambda_range(5000., 9000.)

and load a line catalog. Since in the MOS example we are using an arc frame as calibrator, we select the proper line

catalog

>>> mods_arc = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

>>> wave_calib.load_image(mods_arc)

>>> NeHg_cat="conf/catalogs/NeHg_hr.dat"

>>> # Do the computation

>>> ID532016_exr = wave_calib.compute_spectra_wave(NeHg_cat)

During this computation we will see appear crosses in the DS9 viewer on the measured lines positions: one cross for

each line, each slit and each slice.

Note: Since this is a completely automatic process, only reliable catalog lines, i.e. lines with flag 1 (see Catalog

section for details) will be used.

In case we are satisfied by the results, we can save it

>>> ID532016_exr.writeto("examples/tmp/ID532016.exr", overwrite=True)

8.2. Inverse Dispersion Solution data tuning 41

SpectraPy Documentation, Release 1.0.1

8.2.1 The longslit case

For longslit data, the procedure is the same. We just reports the list of commands, but there are not differences compared

to the MOS case.

>>> luci_mask = "conf/masks/luci_LS_0.75.mdf"

>>> luci = "conf/instruments/luci_G200LoRes_1.93_1.8.icf"

>>> sc_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

>>> crv = "examples/tmp/LUCI1.data.crv"

>>> opt = "examples/tmp/LUCI1.opt"

>>> ids = "examples/tmp/LUCI1.ids"

>>> from spectrapy.datacalib.wavelengthcalib import WavelengthCalibration

>>> wave_calib = WavelengthCalibration(luci, luci_mask, opt, crv, ids)

>>> wave_calib.set_lambda_range(15000., 22000.)

>>> wave_calib.load_image(sc_file)

>>> sky_cat = "conf/catalogs/sky_lr.dat"

>>> LS075_exr = wave_calib.compute_spectra_wave(sky_cat)

and save the extraction table

>>> LS075_exr.writeto("examples/tmp/LS075.exr",overwrite=True)

Note: The Extraction Table contains the solution for a given mask, i.e. it is no more a generic model like OPTModel,

CRVModel or IDSModel. It contains the 3 models applied to the current mask. If we want to extract spectra acquired

with the same instrument configuration, but with another mask, we can tune the valid models on our new data, and we

must create a new Extraction Table.

42 Chapter 8. Model Data Tuning

CHAPTER

NINE

SPECTRA EXTRACTION

9.1 The Extraction Table

The ExtractionTable is the final product of the IDSDataCalib and it is the key point to perform the spectra extraction.

Given the mask and the instrument configuration, that table contains the all information to achieve the 2D spectra

extraction. This table is stored as a FITS table.

As described in the previous sections, during IDS data tuning, each slit is sliced and the solution of each slice is

computed independently by the others.

If we focus on a single line, the IDS solution for this line can be jagged and not as smooth as in the frame appears. It

can also happen that the computation of the solution for some row fails (cosmic, bad pixels or other effects can affect

the results on that row). Here we can see the effect previously described, in blue the expected positions.

To avoid these problems SpectraPy provides a methods to rectify the solutions contained in the Extraction Table and

fill any gaps in case of row failures.

43

SpectraPy Documentation, Release 1.0.1

9.2 Extraction Table rectification

This rectification process is performed slit by slit, since the Extraction Table handles each slice separately. For each

slit there are sets of coefficients which are slightly different slice by slice.

Focusing on a single slit, and fixed the order of the polynomial coefficient, SpectraPy gathers together

the coefficients of all the slices. For each coefficient group, SpectraPy fits a polynomial in order to find a

smoother variation of the current coefficient. The final result, is to have a smoother overall solution for the

entire slit.

In the figure below for a given slit, we can see in detail the values of the 0th coefficient slice by slice; the coefficient of

each slice is slightly different from the value of the next slice (the orange points). The red curve is the fit along the slits

(slices position are in arbitrary units). The evaluation of the fit on each slice positions gives us the new 0th coefficients

(the blue points).

Here the lines of code to rectify the solutions

>>> from spectrapy.datacalib.extractiontable import ExtTable

>>> exr = ExtTable.load("examples/tmp/ID532016.exr")

>>> exr.rectify(deg=2, margin=1)

In this case we choose a polynomial of 2nd order (parameter deg=2) and we excluded the 1 pixel (both sides) at the

edges of the slit (margin=1), this is done just to avoid possible mask cutting issues.

Or, if we prefer, we can just refit the single slit

>>> exr['121'].rectify(deg=2, margin=2)

If we display the result of the rectified Extraction Table we can see the solution on a single line is smoother than before

(the blue crosses before rectification, the red crosses after rectification).

44 Chapter 9. Spectra Extraction

SpectraPy Documentation, Release 1.0.1

9.3 Check the Wavelength Solution

Even if the wavelegenth solution contained in the Extraction Table is very precise, this solution could be not the best

once applied on some science images. For example, this can append because distortions could be different night by

night, or occasionally mask can slightly drift away along the night. In order to achieve these kind of problems, or

at least to aware of them, the current SpectraPy release provides us one class to check and inspect the quality of the

wavelength solution applied on a given image.

These checks are performed by the WavelengthCalibCheck class.

We must initialize the class with the Extraction Table to check, load the desiderd image and run the check_ext_table

method. This method can be run, applying multiple constraints:

• the input catalog: to select the lines to check

• the wavelength range: to limit the lambda range to check

• the slits IDs: to select only some slits instead of the whole mask

• the rows range: to check just a region of the slit

>>> from spectrapy.check.wavelengthcheck import WavelengthCalibCheck

>>> exttable = "examples/tmp/ID532016.exr"

>>> arc_frame = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

>>> catalog = "conf/catalogs/NeHg_hr.dat"

>>> check = WavelengthCalibCheck(exttable)

>>> check.load_image(arc_frame)

>>> results = check.check_ext_table(catalog, wrange=(6000., 9000.), slits=('49', '54'),␣

→˓row_start=10, row_end=20)

In this example we decide to:

• check only slits 49 and 54

9.3. Check the Wavelength Solution 45

SpectraPy Documentation, Release 1.0.1

• use catalog lines in the range between 6000 and 9000 Angstroms

• check just the slits rows between 10 and 20

For each selected slit and row, the check_ext_tablemethod starts from the expected positions, given by the Extraction

Table. then it computes the real line position around these expect positions. This is done for each available line the

catalog.

This method collects returns in a class, which allow us to display and browse these results.

Here below, how to display results

>>> results.plot(legend=True)

The class shows us a matplotlib figure containing 3 axes. In the main frame, the upper one, we can see the dis-

placements between expected line positions and local measurement of the line position. In case the legend parameter

is True, a legend with the slits ID is showed on the left side of the frame. This legend allow us to browse along slits,

selecting the desired slit, clicking on the blue bullets. We can also browse along slits pressing n key for the next slit

and p for the previous.

We can also inspect more details of the solution. Clicking with the left mouse button on a single marker of the main

frame, the solutions related the a single row will be displayed in the bottom left panel. In case we want focus on the

quality of the solution for a single line we can click with the right mouse button on a marker of that line, and the line

solution will be displayed on the bottom right panel.

46 Chapter 9. Spectra Extraction

SpectraPy Documentation, Release 1.0.1

9.4 Spectra Extraction

The ExtractionTable table contains all the information to extract spectra for a given mask and instrument configu-

ration.

Applying the ExtractionTable on data, we obtain a multi-extension FITS file, which contains the 2D spectra wave-

length calibrated and corrected by optical distortions. In case variance (or errors) on raw data are provided, the re-

binning procedure provides also the variance on the re-binned spectra. For each rebinned pixel a quality rate is com-

puted; this is a real number from 0 to 1 which gives us the percentage of pixels used during the rebinning procedure.

These rates are stored in the multi extension as well the variance and the data.

To perform the extraction we must initialize a re-binning engine

>>> from spectrapy.extraction.exponentialfilter import ExponentialFilter

>>> engine = ExponentialFilter(2, 1000)

The current implementation of SpectraPy provides the Exponential filter as re-binning engine, which requires:

• the radius of the resampling kernel (2 pixels in this case)

• the sub-pixels accuracy in the re-sampling for each pixel (1000 by default)

The resampling procedure requires a lot of CPU time and the extraction can take a very long time. For this reason

beside the pure Python class we develop also a Cython class which is faster. In the Cython class the radius and the

sub-pixels parameters can not be tuned, the class uses 2 pixels as radius and 1000 as subpixels. This choice is quite

standard.

In case, for any reason, we want change these parameters, we must set the cython flag to False during the class

initialization.

The re-sampling engine must also know the extraction range we are interested in, and the re-binning step of the re-

sampled spectra. In this example we decided to extract from 6000 up to 9000 Angstrom, creating spectra linearly

re-sampled every 0.8 Angstrom.

9.4. Spectra Extraction 47

SpectraPy Documentation, Release 1.0.1

>>> engine.set_extraction_range(6000., 9000., 0.8)

Note: A good choice for resampling value (0.8 Angstrom in this example), could be the nominal grism dispersion

value.

Now, we can do the real job starting the extraction. By default the extraction will extract all the spectra described in

the ExtractionTable, but we can also decide to extract a sub-sample of them providing a list of ID, as defined in the

Mask description file.

>>> from spectrapy.datacalib.extractiontable import ExtTable

>>> #Load the extraction table and rectify it

>>> exr=ExtTable.load('examples/tmp/ID532016.exr')

>>> #Extract the spectra

>>> objlist = ('121', '119', 'gnz_lae1_1')

>>> mods_arc = "examples/data/mods1r/mods1r.20180121.0073.fits.bz2"

>>> spectra2d = engine.extract(exr, mods_arc, objlist)

and save the spectra.

>>> spectra2d.writeto('examples/tmp/mods1r_spectra.fits')

This produces a multi extension FITS file the file in figure below, where extension name is combination of: slit id, data

content (in the current version only 2DCOUNTS is available) and type of data (data, variances of quality flags).

The selection can be performed also on a sub region along the cross dispersion direction. For example in the longslit

LUCI case, we can decide to extract just the region around the object itself.

>>> from spectrapy.extraction.exponentialfilter import ExponentialFilter

>>> from spectrapy.datacalib.extractiontable import ExtTable

>>> exr=ExtTable.load('examples/tmp/LS075.exr')

>>> engine = ExponentialFilter()

>>> # Set the extraction range

>>> engine.set_extraction_range(15000., 22000., 4.3)

(continues on next page)

48 Chapter 9. Spectra Extraction

SpectraPy Documentation, Release 1.0.1

(continued from previous page)

>>> # Select a sub regione along the spatial direction

>>> sc_file = "examples/data/luci1LoRes/luci1.20180202.0181.fits.bz2"

>>> spectra2d = engine.extract(exr, sc_file, row_start=250, row_end=310)

>>> #And save it

>>> spectra2d.writeto('examples/tmp/luci1_spectra.fits', overwrite=True)

The data content of the extracted spectra appears like this

9.5 Spectra Extraction Adjustment

Models are computed on a set of frames and then applied on the science frames (usually another set of frames) to

perform the spectra extraction. In some cases the match between the 2 set of data can be perfect.

Data can show tiny differences along the night, due to different instrument distortions at different positions of the

telescope. Or due to slight shifts of the mask along the night.

In order to compensate these changes, SpectraPy allow us to adjust the solution contained in the ExtractionTable on the

data we are extracting. The extract method of the ExponentialFilter class has 2 optional parameters to perform

this adjustment: xadjust and lines.

If the xadjust parameter is True the recipe recomputes both left and right edges, at the lambda reference position, of

the spectra selected by the objlist. Then it computes the difference between these new edge positions and the edge

positions expected by the ExtractionTable. The shift along the cross dispersion direction is the sigma clipped mean

of these differences.

The parameter lines is used to compute the shift along the dispersion direction. If this parameter is a valid line

catalog containing just few very bright isolated lines, SpectraPy uses these lines to compute the differences between

theirs expected positions (according with the ExtractionTable solution) and theirs real position on the frame. The

average the differences between expected and real positions is the shift amount along the dispersion direction.

Here just an example of the use of these parameters

>>> spectra2d_adj = engine.extract(exr, sc_file, row_start=250, row_end=310,␣

→˓xadjust=True, lines=[16235.376, 17880.298, 19350.119, 21802.312])

9.5. Spectra Extraction Adjustment 49

