346 research outputs found

    A simple prescription for simulating and characterizing gravitational arcs

    Get PDF
    Simple models of gravitational arcs are crucial to simulate large samples of these objects with full control of the input parameters. These models also provide crude and automated estimates of the shape and structure of the arcs, which are necessary when trying to detect and characterize these objects on massive wide area imaging surveys. We here present and explore the ArcEllipse, a simple prescription to create objects with shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a S\'ersic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+S\'ersic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor preventing ArcEllipse models from accurately describing real lensed systems.Comment: 12 pages, 11 figures, accepted for publication in A&

    The first 62 AGN observed with SDSS-IV MaNGA - IV: gas excitation and star-formation rate distributions

    Get PDF
    We present maps of the ionized gas flux distributions, excitation, star-formation rate SFR, surface mass density ΣH+\Sigma_{H+}, and obtain total values of SFR and ionized gas masses {\it M} for 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA and compare them with those of a control sample of 112 non-active galaxies. The most luminous AGN -- with L(\rm{[OIII]}\lambda 5007) \ge 3.8\times 10^{40}\,\mbox{erg}\,\mbox{s}^{-1}, and those hosted by earlier-type galaxies are dominated by Seyfert excitation within 0.2 effective radius ReR_e from the nucleus, surrounded by LINER excitation or transition regions, while the less luminous and hosted by later-type galaxies show equally frequent LINER and Seyfert excitation within 0.2Re0.2\,R_e. The extent RR of the region ionized by the AGN follows the relation RL([OIII])0.5R\propto\,L(\rm{[OIII]})^{0.5} -- as in the case of the Broad-Line Region. The SFR distribution over the region ionized by hot stars is similar for AGN and controls, while the integrated SFR -- in the range 1031010^{-3}-10\,M_\odot\,yr1^{-1} is also similar for the late-type sub-sample, but higher in the AGN for 75\% of the early-type sub-sample. We thus conclude that there is no signature of AGN quenching star formation in the body of the galaxy in our sample. We also find that 66\% of the AGN have higher ionized gas masses MM than the controls -- in the range 1053×107^5-3\times10^7\,M_\odot -- while 75\% of the AGN have higher ΣH+\Sigma_{H+} within 0.2Re0.2\,R_e than the control galaxies

    StarHorse: A Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars

    Full text link
    Understanding the formation and evolution of our Galaxy requires accurate distances, ages and chemistry for large populations of field stars. Here we present several updates to our spectro-photometric distance code, that can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectro-photometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called {\tt StarHorse}) can acommodate different observational datasets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known {\it Gaia}-like parallaxes. The typical internal precision (obtained from realistic simulations of an APOGEE+Gaia-like sample) are 8%\simeq 8\% in distance, 20%\simeq 20\% in age,6 \simeq 6\ % in mass, and 0.04\simeq 0.04 mag in AVA_V. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of [0,2]%\simeq [0,2]\% for distances, [12,31]%\simeq [12,31]\% for ages, [4,12]%\simeq [4,12]\% for masses, and 0.07\simeq 0.07 mag for AVA_V. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3 and GALAH DR1 catalogues.Comment: 21 pages, 12 figures, accepte

    Line strengths of early-type galaxies

    Full text link
    In this paper we present measurements of velocity dispersions and Lick indices for 509 galaxies in the local Universe, based on high signal-to-noise, long slit spectra obtained with the 1.52 m ESO telescope at La Silla. The conversion of our measurements into the Lick/IDS system was carried out following the general prescription of Worthey and Ottaviani 1997. Comparisons of our measurements with those of other authors show, in general, good agreement. We also examine the dependence between these indices (e.g., Hbeta, Mg_2, Fe5270 and NaD) and the central velocity dispersion (sigma), and we find that they are consistent with those previously reported in the literature. Benefiting from the relatively large size of the sample, we are able to investigate the dependence of these relations on morphology and environment, here represented by the local galaxy density. We find that for metallic lines these relations show no significant dependence on environment or morphology, except in the case of NaD, which shows distinct behavior for E and S0. On the other hand, the Hbeta-logsigma shows a significant difference as a function of the local density of galaxies, which we interpret as being caused by the truncation of star formation in high density environments. Comparing our results with those obtained by other authors we find a few discrepancies, adding to the ongoing debate about the nature of these relations. Finally, we report that the scatter of the Mg indices versus sigma relations correlate with Hbeta, suggesting that age may contribute to the scatter. Furthermore, this scatter shows no significant dependence on morphology or environment. Our results are consistent with the current downsizing model, where low mass galaxies have an extended star formation history (abridged).Comment: 88 pages, 24 figures, to be published in AJ, for further information see http://staff.on.br/ogand

    The first 62 AGN observed with SDSS-IV MaNGA -- III: stellar and gas kinematics

    Get PDF
    We investigate the effects of Active Galactic Nuclei (AGN) on the gas kinematics of their host galaxies, using MaNGA data for a sample of 62 AGN hosts and 109 control galaxies (inactive galaxies). We compare orientation of the line of nodes (kinematic Position Angle - PA) measured from the gas and stellar velocity fields for the two samples. We found that AGN hosts and control galaxies display similar kinematic PA offsets between gas and stars. However, we note that AGN have larger fractional velocity dispersion σ\sigma differences between gas and stars [σfrac=(σgasσstars)/σstars\sigma_{frac}=(\sigma_{\rm gas}-\sigma_{stars})/\sigma_{\rm stars}] when compared to their controls, as obtained from the velocity dispersion values of the central (nuclear) pixel (2.5" diameter). The AGN have a median value of σfrac\sigma_{\rm frac} of AGN=0.04_{\rm AGN}=0.04, while the the median value for the control galaxies is CTR=0.23_{\rm CTR}=-0.23. 75% of the AGN show σfrac>0.13\sigma_{frac}>-0.13, while 75% of the normal galaxies show σfrac<0.04\sigma_{\rm frac}<-0.04, thus we suggest that the parameter σfrac\sigma_{\rm frac} can be used as an indicative of AGN activity. We find a correlation between the [OIII]λ\lambda5007 luminosity and σfrac\sigma_{frac} for our sample. Our main conclusion is that the AGN already observed with MaNGA are not powerful enough to produce important outflows at galactic scales, but at 1-2 kpc scales, AGN feedback signatures are always present on their host galaxies.Comment: 19 pages, 8 figures, published in MNRA

    Do observed metallicity gradients of early-type galaxies support a hybrid formation scenario?

    Full text link
    We measure radial gradients of the Mg2 index in 15 E-E/S0 and 14 S0 galaxies. Our homogeneous data set covers a large range of internal stellar velocity dispersions (2.0<logsigma<2.5) and Mg2 gradients (dMg2/dlogr/re* up to -0.14mag/dex). We find for the first time, a noticeable lower boundary in the relation between Mg2 gradient and sigma along the full range of sigma, which may be populated by galaxies predominantly formed by monolithic collapse. At high sigma, galaxies showing flatter gradients could represent objects which suffered either important merging episodes or later gas accretion. These processes contribute to the flattening of the metallicity gradients and their increasing importance could define the distribution of the objects above the boundary expected by the ``classical'' monolithic process. This result is in marked contrast with previous works which found a correlation between dMg2/dlogr/re* and sigma confined to the low mass galaxies, suggesting that only galaxies below some limiting sigma were formed by collapse whereas the massive ones by mergers. We show observational evidence that a hybrid scenario could arise also among massive galaxies. Finally, we estimated d[Z/H] from Mg2 and Hbeta measurements and single stellar population models. The conclusions remain the same, indicating that the results cannot be ascribed to age effects on Mg2.Comment: 11 pages, 2 figures, to appear in ApJLetter

    Ameliorating Systematic Uncertainties in the Angular Clustering of Galaxies: A Study using SDSS-III

    Get PDF
    We investigate the effects of potential sources of systematic error on the angular and photometric redshift, z_phot, distributions of a sample of redshift 0.4 < z < 0.7 massive galaxies whose selection matches that of the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass sample. Utilizing over 112,778 BOSS spectra as a training sample, we produce a photometric redshift catalog for the galaxies in the SDSS DR8 imaging area that, after masking, covers nearly one quarter of the sky (9,913 square degrees). We investigate fluctuations in the number density of objects in this sample as a function of Galactic extinction, seeing, stellar density, sky background, airmass, photometric offset, and North/South Galactic hemisphere. We find that the presence of stars of comparable magnitudes to our galaxies (which are not traditionally masked) effectively remove area. Failing to correct for such stars can produce systematic errors on the measured angular auto-correlation function, w, that are larger than its statistical uncertainty. We describe how one can effectively mask for the presence of the stars, without removing any galaxies from the sample, and minimize the systematic error. Additionally, we apply two separate methods that can be used to correct the systematic errors imparted by any parameter that can be turned into a map on the sky. We find that failing to properly account for varying sky background introduces a systematic error on w. We measure w, in four z_phot slices of width 0.05 between 0.45 < z_phot < 0.65 and find that the measurements, after correcting for the systematic effects of stars and sky background, are generally consistent with a generic LambdaCDM model, at scales up to 60 degrees. At scales greater than 3 degrees and z_phot > 0.5, the magnitude of the corrections we apply are greater than the statistical uncertainty in w.Comment: Accepted by MNRA

    Air Travel Is Associated with Intracontinental Spread of Dengue Virus Serotypes 1–3 in Brazil

    Get PDF
    Dengue virus and its four serotypes (DENV-1 to DENV-4) infect 390 million people and are implicated in at least 25,000 deaths annually, with the largest disease burden in tropical and subtropical regions. We investigated the spatial dynamics of DENV-1, DENV-2 and DENV-3 in Brazil by applying a statistical framework to complete genome sequences. For all three serotypes, we estimated that the introduction of new lineages occurred within 7 to 10-year intervals. New lineages were most likely to be imported from the Caribbean region to the North and Northeast regions of Brazil, and then to disperse at a rate of approximately 0.5 km/day. Joint statistical analysis of evolutionary, epidemiological and ecological data indicates that aerial transportation of humans and/or vector mosquitoes, rather than Aedes aegypti infestation rates or geographical distances, determine dengue virus spread in Brazil
    corecore