47 research outputs found

    Photometry of the comet 2060 Chiron

    Get PDF
    The comet 2060 Chiron has proven to be an interesting and enigmatic object. Situated between the orbits of Saturn and Uranus, it was originally classified as the most distant asteroid. It began to show cometary behavior in 1987 by increasing a full magnitude in brightness and developing a coma; there is evidence also for similar earlier outbursts. A thorough study of Chiron is important for two reasons: (1) it is a transition object defining the relationship between comets, asteroids, and meteorites; and (2) a full description of its changes in brightness - particularly on time scale of hours - will provide an empirical foundation for understanding the physical mechanisms (including outgassing, sublimation of volatiles, and even significant mass ejections) driving the evolution of comets. Short term outbursts were observed in early 1989, and a rapid decrease in brightness of Chiron's coma was observed in 1990 in the V and R filters. Also, a rotational lightcurve was detected of the nucleus with an amplitude only 1/4 that observed in its quiescent state: this fact indicates the increased importance of the optically thin coma to the observed brightness

    CCD photometry of 2060 Chiron, 1991 January

    Get PDF
    Observations of 2060 Chiron was performed on 7 to 8 Jan. 1991 with the Mt. Palomar 1.52 m telescope in the Gunn-R passband. On-chip field stars were used to perform differential reductions. The repeatability of the 5.9 hour light curve was excellent, both within a night and from night to night. No evidence for short-term secular variations similar to those seen last year by both Luu and Jewitt (1990) and Buratti and Dunbar (1991) is seen in the new light curve. Chiron's rotational light curve appears strikingly similar to that obtained a year earlier by Luu and Jewitt (1990), both in amplitude and shape. Both light curves show strongly correlated changes over a timescale of perhaps 15 minutes. These same features were marginally visible in the 1986 light curve. Such behavior is believed to be evidence that Chiron may be more aspherical than the 4 percent intensity variation might otherwise indicate, and favors a viewing geometry where the subearth latitude is rather low. Chiron was much fainter in 1985, when a partial light curve was obtained by Marcialis. Due to the lower sampling rate of these early data, no conclusions can be made regarding the high-frequency light curve structure back then. All three of these light curves differ significantly from that obtained by Buratti and Dunbar (1991), one week before the observations of Luu and Jewitt. The Chiron field was calibrated using Landolt standards on Ut 15 Mar. 1991. A mean R-magnitude of 15.6 + or - 0.1 was found. Variability of 2060 Chiron was demonstrated over timescales of minutes, hours, and years. An intense campaign was urged to monitor the photometric behavior of Chiron throughout the 1990s

    Fingerprint Adversarial Presentation Attack in the Physical Domain

    Get PDF
    With the advent of the deep learning era, Fingerprint-based Authentication Systems (FAS) equipped with Fingerprint Presentation Attack Detection (FPAD) modules managed to avoid attacks on the sensor through artificial replicas of fingerprints. Previous works highlighted the vulnerability of FPADs to digital adversarial attacks. However, in a realistic scenario, the attackers may not have the possibility to directly feed a digitally perturbed image to the deep learning based FPAD, since the channel between the sensor and the FPAD is usually protected. In this paper we thus investigate the threat level associated with adversarial attacks against FPADs in the physical domain. By materially realising fakes from the adversarial images we were able to insert them into the system directly from the “exposed” part, the sensor. To the best of our knowledge, this represents the first proof-of-concept of a fingerprint adversarial presentation attack. We evaluated how much liveness score changed by feeding the system with the attacks using digital and printed adversarial images. To measure what portion of this increase is due to the printing itself, we also re-printed the original spoof images, without injecting any perturbation. Experiments conducted on the LivDet 2015 dataset demonstrate that the printed adversarial images achieve ∼ 100% attack success rate against an FPAD if the attacker has the ability to make multiple attacks on the sensor (10) and a fairly good result (∼ 28%) in a one-shot scenario. Despite this work must be considered as a proof-of-concept, it constitutes a promising pioneering attempt confirming that an adversarial presentation attack is feasible and dangerous

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    The Discovery of Two New Satellites of Pluto

    Full text link
    Pluto's first known moon, Charon, was discovered in 1978 (Christy 1978) and has a diameter about half that of Pluto (Buie 1992,Young 1994, Sicardy 2005), which makes it larger relative to its primary than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful (Stern 1991, Stern 1994, Stern 2003), but they were not sensitive to objects <=150 km in diameter and there are no fundamental reasons why Pluto should not have more satellites (Stern 1994). Here we report the discovery of two additional moons around Pluto, provisionally designated S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), which makes Pluto the first Kuiper belt object (KBO) known to have multiple satellites. These new satellites are much smaller than Charon (diameter~1200 km), with P1 ranging in diameter from 60-165 km depending on the surface reflectivity, and P2 about 20% smaller than P1. Although definitive orbits cannot be derived, both new satellites appear to be moving in circular orbits in the same orbital plane as Charon, with orbital periods of ~38 days (P1) and ~25 days (P2). The implications of the discovery of P1 and P2 for the origin and evolution of the Pluto system, and for the satellite formation process in the Kuiper belt, are discussed in a companion paper (Stern 2006).Comment: Preprint of a paper accepted for publication in the journal Natur

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P &lt; 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P &lt; 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Antibacterial polyphenols from olive oil mill waste waters

    No full text
    Olive oil vegetation waters (VW) were highly toxic to both phytopathogenic Pseudomonas syringae (Smith, Yung et al.) pv. savastanoi (Gram-negative) and Corynebacterium michiganense (Gram-positive) and showed bactericidal activity in their original concentration (in raw form). Among the main polyphenols, present in the waste waters, methylcatechol proved to be the most toxic to Ps. savastanoi at 10(-4) mol l-1, and also demonstrated bactericidal activity, while on Coryne. michiganense it was only slightly active; catechol and hydroxytyrosol were less active on Ps. savastanoi, but inactive on Coryne. michiganense; tyrosol and its synthetic isomers 1,2- and 1,3-tyrosol were completely inactive on both bacteria. Among the derivatives of VW polyphenols considered, acetylcatechol and guaiacol were selectively toxic for Ps. savastanoi, while o-quinone was strongly toxic for both bacteria. The minor carboxylic polyphenols of VW at 10(-4) mol l-1 were all inactive on the bacteria. VW, catechol, 4-methylcatechol and the less abundant carboxylic polyphenols proved to be toxic on Hep2 human cells. Finally the possibility of using the active polyphenols in agriculture in an integrated pest management program for the protection of the olive plant is discusse

    Are spoofs from latent fingerprints a real threat for the best state-of-art liveness detectors?

    No full text
    We investigated the threat level of realistic attacks using latent fingerprints against sensors equipped with state-of-art liveness detectors and fingerprint verification systems which integrate such liveness algorithms. To the best of our knowledge, only a previous investigation was done with spoofs from latent prints. In this paper, we focus on using snapshot pictures of latent fingerprints. These pictures provide molds, that allows, after some digital processing, to fabricate high-quality spoofs. Taking a snapshot picture is much simpler than developing fingerprints left on a surface by magnetic powders and lifting the trace by a tape. What we are interested here is to evaluate preliminary at which extent attacks of the kind can be considered a real threat for state-of-art fingerprint liveness detectors and verification systems. To this aim, we collected a novel data set of live and spoof images fabricated with snapshot pictures of latent fingerprints. This data set provide a set of attacks at the most favourable conditions. We refer to this method and the related data set as “ScreenSpoof”. Then, we tested with it the performances of the best liveness detection algorithms, namely, the three winners of the LivDet competition. Reported results point out that the ScreenSpoof method is a threat of the same level, in terms of detection and verification errors, than that of attacks using spoofs fabricated with the full consensus of the victim. We think that this is a notable result, never reported in previous work

    LivDet 2017 fingerprint liveness detection competition 2017

    No full text
    Fingerprint Presentation Attack Detection (FPAD) deals with distinguishing images coming from artificial replicas of the fingerprint characteristic, made up of materials like silicone, gelatine or latex, and images coming from alive fingerprints. Images are captured by modern scanners, typically relying on solid-state or optical technologies. Since from 2009, the Fingerprint Liveness Detection Competition (LivDet) aims to assess the performance of the state-of-the-art algorithms according to a rigorous experimental protocol and, at the same time, a simple overview of the basic achievements. The competition is open to all academics research centers and all companies that work in this field. The positive, increasing trend of the participants number, which supports the success of this initiative, is confirmed even this year: 17 algorithms were submitted to the competition, with a larger involvement of companies and academies. This means that the topic is relevant for both sides, and points out that a lot of work must be done in terms of fundamental and applied research
    corecore