10 research outputs found
Fibrin and Collagen Differentially but Synergistically Regulate Sprout Angiogenesis of Human Dermal Microvascular Endothelial Cells in 3-Dimensional Matrix
Angiogenesis is a highly regulated event involving complex, dynamic interactions between microvascular endothelial cells and extracellular matrix (ECM) proteins. Alteration of ECM composition and architecture is a hallmark feature of wound clot and tumor stroma. We previously reported that during angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. However, the role of 3D ECM in the regulation of angiogenesis associated with wound healing and tumor growth is not well defined. This study investigates the correlation of sprout angiogenesis and ECM microenvironment using in vivo and in vitro 3D angiogenesis models. It demonstrates that fibrin and type I collagen 3D matrices differentially but synergistically regulate sprout angiogenesis. Thus blocking both integrin alpha v beta 3 and integrin alpha 2 beta 1 might be a novel strategy to synergistically block sprout angiogenesis in solid tumors
Fibronectin Peptides that Bind PDGF-BB Enhance Survival of Cells and Tissue under Stress
Stressors after injury from a multitude of factors can lead to cell death. We have identified four fibronectin (FN) peptides: two from the first FN type III repeat (FNIII1), one from the 13th FN type III repeat (FNIII13), and one from FN variable region (IIICS), which when tethered to a surface acted as platelet-derived growth factor-BB (PDGF-BB) enhancers to promote cell survival. One of the FNIII1 peptides and its smallest (14-mer) bioactive form (P12) were also active in solution. Specifically, P12 bound PDGF-BB (KD=200 nM), enhanced adult human dermal fibroblast (AHDF) survival under serum starvation, oxidative or endoplasmic reticulum stressors, and limited burn-injury progression in a rat hot comb model. Furthermore, P12 inhibited endoplasmic reticulum stress-induced c-Jun N-terminal kinase (JNK) activation. Although many growth factors have been found to bind FN directly or indirectly, here we identify peptide sequences of growth factor-binding sites in FN. The finding of these peptides further delineated how the extracellular matrix protein FN can support cell survival. As the peptide P12 is active in either soluble form or tethered to a substrate, it will have multifactorial uses as a bioactive peptide by itself or in tissue engineering