43 research outputs found

    Electrolyte design for the manipulation of gas bubble detachment during hydrogen evolution reaction

    Get PDF
    During electrochemical gas evolution reactions, the continuous and vigorous formation of gas bubbles hugely impacts the efficiency of the underlying electrochemical processes. In particular, enhancing the detachment of gas bubbles from the electrode surface has emerged as an effective strategy to improve reaction efficiency. In this study, we demonstrate that the detachment of H2 gas bubbles can be controlled by the electrolyte composition, which can be optimized. We employ a well-defined Pt microelectrode and utilize electrochemical oscillation analysis to elucidate the features of H2 gas bubble detachment. Our investigation explores how the behaviour of H2 gas bubbles responds to variations in electrolyte composition and concentration. The coalescence efficiency of electrochemically generated microbubbles, a critical factor determining the mode of H2 gas bubble detachment (random detachment vs. single H2 gas bubble detachment), is profoundly influenced by the electrolyte composition. Specifically, coalescence efficiency follows the Hofmeister series concerning anions and coalescence is consistently inhibited in the presence of alkali metal cations. Furthermore, we establish a comprehensive model that accounts for both thermal and solutal Marangoni effects, allowing us to rationalize the trend of detachment size and period of single H2 gas bubbles under various conditions.</p

    Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics

    Get PDF
    The evolution of electrogenerated gas bubbles during water electrolysis can significantly hamper the overall process efficiency. Promoting the departure of electrochemically generated bubbles during (water) electrolysis is therefore beneficial. For a single bubble, a departure from the electrode surface occurs when buoyancy wins over the downward-acting forces (e.g., contact, Marangoni, and electric forces). In this work, the dynamics of a pair of H2 bubbles produced during the hydrogen evolution reaction in 0.5 M H2SO4 using a dual platinum microelectrode system is systematically studied by varying the electrode distance and the cathodic potential. By combining high-speed imaging and electrochemical analysis, we demonstrate the importance of bubble-bubble interactions in the departure process. We show that bubble coalescence may lead to substantially earlier bubble departure as compared to buoyancy effects alone, resulting in considerably higher reaction rates at a constant potential. However, due to continued mass input and conservation of momentum, repeated coalescence events with bubbles close to the electrode may drive departed bubbles back to the surface beyond a critical current, which increases with the electrode spacing. The latter leads to the resumption of bubble growth near the electrode surface, followed by buoyancy-driven departure. While less favorable at small electrode spacing, this configuration proves to be very beneficial at larger separations, increasing the mean current up to 2.4 times compared to a single electrode under the conditions explored in this study.</p

    Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction

    Get PDF
    The development of technologies for the recycling of carbon dioxide into carbon-containing fuels is one of the major challenges in sustainable energy research. Two of the main current limitations are the poor efficiency and fast deactivation of catalysts. Core–shell nanoparticles are promising candidates for enhancing challenging reactions. In this work, Au@Cu core–shell nanoparticles with well-defined surface structures were synthesized and evaluated as catalysts for the electrochemical reduction of carbon dioxide in neutral medium. The activation potential, the product distribution and the long term durability of this catalyst were assessed by electrochemical methods, on-line electrochemical mass spectrometry (OLEMS) and on-line high performance liquid chromatography. Our results show that the catalytic activity and the selectivity can be tweaked as a function of the thickness of Cu shells. We have observed that the Au cubic nanoparticles with 7–8 layers of copper present higher selectivity towards the formation of hydrogen and ethylene; on the other hand, we observed that Au cubic nanoparticles with more than 14 layers of Cu are more selective towards the formation of hydrogen and methane. A trend in the formation of the gaseous products can be also drawn. The H2 and CH4 formation increases with the number of Cu layers, while the formation of ethylene decreases. Formic acid was the only liquid species detected during CO2 reduction. Similar to the gaseous species, the formation of formic acid is strongly dependent on the number of Cu layers on the core@shell nanoparticles. The Au cubic nanoparticles with 7–8 layers of Cu showed the largest conversion of CO2 to formic acid at potentials higher than 0.8 V vs. RHE. The observed trends in reactivity and selectivity are linked to the catalyst composition, surface structure and strain/electronic effects

    Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media

    Get PDF
    The hydrogen evolution reaction (HER) constitutes one of the most important reactions in electrochemistry because of the value of hydrogen as a vector for energy storage and transport. Therefore, understanding the mechanism of this reaction in relation to its pH dependence is of crucial importance. While the HER on Pt(111) works efficiently in acid media, in alkaline media, the reaction is impeded and considerably larger applied overpotentials are necessary. The presence of Ni(OH)2 adsorbed on Pt(111) has been demonstrated to highly improve the rate of hydrogen evolution, decreasing the overpotential of this reaction in comparison to acid media. The way low coverages of Ni(OH)2 on the Pt surface improve HER is still under discussion. In this work, we have prepared different Ni(OH)2 coverages on Pt(111) to check how Ni(OH)2 deposited on Pt(111) influences the HER rate. To this end, the Ni(OH)2–Pt(111)|0.1 M NaOH interface was characterized with cyclic voltammetry, CO displacement technique, and Fourier transform infrared-reflection absorption spectroscopy. On the basis of the proposal made by Ledezma-Yanez et al. [Nature Energy 2017, 2, 17031] to explain the HER in alkaline media, we also studied the effect of the different Ni(OH)2 coverages on the electric field using the laser-induced temperature jump technique. This technique revealed that introduction of nickel adlayers on the surface decreases the ordering of the water network at the interphase, a fact that has relevant implications for the HER mechanism.The authors thankfully acknowledge financial support from the MICINN (Spain) through project CTQ2016-76221-P. P. Sebastian acknowledges to MECD the award of a FPU grant. F.J.S. acknowledges to Ministerio de Economia, Industria y Competitividad (PEJ-2014-A-57942/PEJ-2014-P-00295)

    Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes

    Get PDF
    Hydrogen evolution on platinum is a key reaction for electrocatalysis and sustainable energy storage, yet its pH-dependent kinetics are not fully understood. Here we present a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range. Electrochemical measurements show that hydrogen adsorption and hydrogen evolution are both slow in alkaline media, consistent with the observation of a shift in the rate-determining step for hydrogen evolution. Adding nickel to the Pt(111) surface lowers the barrier for hydrogen adsorption in alkaline solutions and thereby enhances the hydrogen evolution rate. We explain these observations with a model that highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field. The model is supported by laser-induced temperature-jump measurements. Our model sheds light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media.This work was supported by a TOP grant from the Netherlands Organization for Scientific Research (NWO). Support from MINECO (Spain) through project CTQ2013-44083-P is acknowledged

    Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis

    Get PDF
    This Perspective article outlines a simple but general theoretical analysis for multiple proton-electron transfer reactions, based on the microscopic theory of proton-coupled electron transfer reactions, recent developments in the thermodynamic theory of multi-step electron transfer reactions, and the experimental realization that many multiple proton-coupled electron transfer reactions feature decoupled proton-electron steps in their mechanism. It is shown that decoupling of proton and electron transfer leads to a strong pH dependence of the overall catalytic reaction, implying an optimal pH for high catalytic turnover, and an associated optimal catalyst at the optimal pH. When more than one catalytic intermediate is involved, scaling relationships between intermediates may dictate the optimal catalyst and limit the extent of reversibility that may be achievable for a multiple proton-electron-transfer reaction. The theory is discussed in relation to the experimental results for a number of redox reactions that are of importance for sustainable energy conversion, primarily focusing on their pH dependence

    The modeling of mixed-mode and chaotic oscillations in electrochemical systems

    No full text
    info:eu-repo/semantics/publishe

    Mass-transport-limited oxidation of formic acid on a PdMLPt(100) electrode in perchloric acid

    Get PDF
    In this communication, we study the electrocatalytic formic acid oxidation process on an epitaxially grown Pd monolayer on a Pt(100) single crystal in perchloric acid. The formic acid oxidation activity on this PdMLPt(100) electrode in perchloric acid is significantly enhanced compared to the same electrode in sulfuric acid and compared to unmodified Pt(100), with a low onset potential of around 0.14 VRHE. The absence of hysteresis between the positive and negative scan during formic acid oxidation indicates the remarkable resistance to CO poisoning of the Pd monolayer surface. Most importantly, we report, for the first time, a mass-transport-limited formic acid oxidation rate on the PdMLPt(100) rotating electrode in perchlorate acid, setting a catalytic benchmark for future electrocatalysts for formic acid oxidation. Keywords: Palladium monolayer, Platinum single crystal, Formic acid oxidation, Mass-transport limitation, Electrocatalysi
    corecore