27 research outputs found

    Multiplicative-Additive Proof Equivalence is Logspace-complete, via Binary Decision Trees

    Full text link
    Given a logic presented in a sequent calculus, a natural question is that of equivalence of proofs: to determine whether two given proofs are equated by any denotational semantics, ie any categorical interpretation of the logic compatible with its cut-elimination procedure. This notion can usually be captured syntactically by a set of rule permutations. Very generally, proofnets can be defined as combinatorial objects which provide canonical representatives of equivalence classes of proofs. In particular, the existence of proof nets for a logic provides a solution to the equivalence problem of this logic. In certain fragments of linear logic, it is possible to give a notion of proofnet with good computational properties, making it a suitable representation of proofs for studying the cut-elimination procedure, among other things. It has recently been proved that there cannot be such a notion of proofnets for the multiplicative (with units) fragment of linear logic, due to the equivalence problem for this logic being Pspace-complete. We investigate the multiplicative-additive (without unit) fragment of linear logic and show it is closely related to binary decision trees: we build a representation of proofs based on binary decision trees, reducing proof equivalence to decision tree equivalence, and give a converse encoding of binary decision trees as proofs. We get as our main result that the complexity of the proof equivalence problem of the studied fragment is Logspace-complete.Comment: arXiv admin note: text overlap with arXiv:1502.0199

    MALL proof equivalence is Logspace-complete, via binary decision diagrams

    Get PDF
    Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.Comment: in TLCA 201

    On the Resolution Semiring

    Get PDF
    In this thesis, we study a semiring structure with a product based on theresolution rule of logic programming. This mathematical object was introducedinitially in the setting of the geometry of interaction program in order to modelthe cut-elimination procedure of linear logic. It provides us with an algebraicand abstract setting, while being presented in a syntactic and concrete way, inwhich a theoretical study of computation can be carried on.We will review first the interactive interpretation of proof theory withinthis semiring via the categorical axiomatization of the geometry of interactionapproach. This interpretation establishes a way to translate functional programsinto a very simple form of logic programs.Secondly, complexity theory problematics will be considered: while thenilpotency problem in the semiring we study is undecidable in general, it willappear that certain restrictions allow for characterizations of (deterministicand non-deterministic) logarithmic space and (deterministic) polynomial timecomputation

    Memoization for Unary Logic Programming: Characterizing PTIME

    Full text link
    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for polynomial time computation, using an encoding of pushdown automata. We then introduce an algebraic counterpart of the memoization technique in order to show its PTIME soundness. We finally relate our approach and complexity results to complexity of logic programming. As an application of our techniques, we show a PTIME-completeness result for a class of logic programming queries which use only unary function symbols.Comment: Soumis {\`a} LICS 201

    Unification and Logarithmic Space: Journal Version

    Get PDF
    Soumis au numéro spécial de LMCS pour RTA/TLCA 2014 ( http://www.lmcs-online.org/ojs/specialIssues.php?id=67 )We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is rooted in proof theory and more specifically linear logic and geometry of interaction. We show how to build a model of computation in the unification algebra and then, by means of a syntactic representation of finite permutations in the algebra, we prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. Finally, we show that the construction naturally corresponds to pointer machines, an convenient way of understanding logarithmic space computation

    Unification and Logarithmic Space

    Full text link
    We present an algebraic characterization of the complexity classes Logspace and Nlogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is rooted in proof theory and more specifically linear logic and geometry of interaction. We show how to build a model of computation in the unification algebra and then, by means of a syntactic representation of finite permutations in the algebra, we prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. Finally, we show that the construction naturally corresponds to pointer machines, a convenient way of understanding logarithmic space computation.Comment: arXiv admin note: text overlap with arXiv:1402.432

    Les députés héraultais et la viticulture dans l’entre-deux-guerres : organes de décision, relais de pouvoir, législation

    Get PDF
    L’approche du sujet et les sources À l’origine de ma recherche, il y avait une volonté de m’intéresser à l’histoire rurale de l’Hérault et plus particulièrement à un secteur qui a marqué profondément les destinées de ce territoire : la viticulture, plusieurs fois séculaire. J’ai donc entrepris d’analyser l’évolution de ce secteur en le mettant en interaction avec une passion personnelle pour l’analyse politique. J’ai choisi la Troisième République qui avait été, jusqu’à une date récente, peu ..

    Les députés héraultais et la viticulture dans l’entre-deux-guerres : organes de décision, relais de pouvoir, législation

    Get PDF
    L’approche du sujet et les sources À l’origine de ma recherche, il y avait une volonté de m’intéresser à l’histoire rurale de l’Hérault et plus particulièrement à un secteur qui a marqué profondément les destinées de ce territoire : la viticulture, plusieurs fois séculaire. J’ai donc entrepris d’analyser l’évolution de ce secteur en le mettant en interaction avec une passion personnelle pour l’analyse politique. J’ai choisi la Troisième République qui avait été, jusqu’à une date récente, peu ..

    Good-for-games ω-Pushdown Automata

    Get PDF
    We introduce good-for-games ω\omega-pushdown automata (ω\omega-GFG-PDA). These are automata whose nondeterminism can be resolved based on the input processed so far. Good-for-gameness enables automata to be composed with games, trees, and other automata, applications which otherwise require deterministic automata. Our main results are that ω\omega-GFG-PDA are more expressive than deterministic ω\omega- pushdown automata and that solving infinite games with winning conditions specified by ω\omega-GFG-PDA is EXPTIME-complete. Thus, we have identified a new class of ω\omega-contextfree winning conditions for which solving games is decidable. It follows that the universality problem for ω\omega-GFG-PDA is in EXPTIME as well. Moreover, we study closure properties of the class of languages recognized by ω\omega-GFG- PDA and decidability of good-for-gameness of ω\omega-pushdown automata and languages. Finally, we compare ω\omega-GFG-PDA to ω\omega-visibly PDA, study the resources necessary to resolve the nondeterminism in ω\omega-GFG-PDA, and prove that the parity index hierarchy for ω\omega-GFG-PDA is infinite. This is a corrected version of the paper arXiv:2001.04392v6 published originally on January 7, 2022

    Multiplicative-Additive Proof Equivalence is Logspace-complete, via Binary Decision Trees

    No full text
    Given a logic presented in a sequent calculus, a natural question is that of equivalence of proofs: to determine whether two given proofs are equated by any denotational semantics, ie any categorical interpretation of the logic compatible with its cut-elimination procedure. This notion can usually be captured syntactically by a set of rule permutations. Very generally, proofnets can be defined as combinatorial objects which provide canonical representatives of equivalence classes of proofs. In particular, the existence of proof nets for a logic provides a solution to the equivalence problem of this logic. In certain fragments of linear logic, it is possible to give a notion of proofnet with good computational properties, making it a suitable representation of proofs for studying the cut-elimination procedure, among other things. It has recently been proved that there cannot be such a notion of proofnets for the multiplicative (with units) fragment of linear logic, due to the equivalence problem for this logic being Pspace-complete. We investigate the multiplicative-additive (without unit) fragment of linear logic and show it is closely related to binary decision trees: we build a representation of proofs based on binary decision trees, reducing proof equivalence to decision tree equivalence, and give a converse encoding of binary decision trees as proofs. We get as our main result that the complexity of the proof equivalence problem of the studied fragment is Logspace-complete
    corecore