123 research outputs found

    Metrics for quantifying the circularity of bioplastics: The case of bio-based and biodegradable mulch films

    Get PDF
    The concept of circularity and its quantification through the Material Circularity Indicator (MCI) is well established for traditional plastic products. In this paper a methodological approach for calculating the circularity of bio-based and biodegradable (BB) products is proposed and applied to BB mulch films. BB products are different from traditional products in as much as they are sourced and regenerated (recycled) not through technical cycles but the biological loop. The suggested method is an adaptation of the MCI where two major changes were made: (i) the mass of the bio-based component corresponds to the recycled material in input and (ii) the mass of the bio-based component leaving the system through composting or biodegradation in soil is accounted as recycled. The modified MCI supports the eco-design of innovative BB products and allows for the comparison of their circularity taking into account the biological source and the expected end of life process such as biodegradation. To demonstrate the adaptation, the method has been applied to BB mulch films. Results showed that the MCI of a biodegradable mulch film, characterized by an average bio-based feedstock content of 30% is 0.37 ± 0.04 in a 0–1 scale. For BB mulch film, the amount of bio-based feedstock is the most sensitive factor and controls linearly the value of the MCI

    The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework

    Get PDF
    In this communication, a wide overview of historical Long-Term Experimental Platforms (LTEP) regarding changes in soil organic matter is presented for the purpose of networking, data sharing, experience sharing and the coordinated design of experiments in the area of Earth system science. This serves to introduce a specific platform of experiments regarding biochar application to soil (LTEP-BIOCHAR) and its use for agronomic and environmental purposes (e.g., carbon sequestration, soil erosion, soil biodiversity) in real conditions and over a significative timeframe for pedosphere dynamics. The methodological framework, including the goals, geographical scope and eligibility rules of such a new platform, is discussed. Currently, the LTEP-BIOCHAR is the first of its kind, a community-driven resource dedicated to biochar, and displays around 20 long-term experiments from Europe, the Middle East and Africa. The selected field experiments take place under dynamically, meteorologically and biologically different conditions. The purposes of the platform are (1) listing the field experiments that are currently active, (2) uncovering methodological gaps in the current experiments and allowing specific metadata analysis, (3) suggesting the testing of new hypotheses without unnecessary duplications while establishing a minimum standard of analysis and methods to make experiments comparable, (4) creating a network of expert researchers working on the agronomical and environmental effects of biochar, (5) supporting the design of coordinated experiments and (6) promoting the platform at a wider international level

    Life cycle assessment and energy balance of a novel polyhydroxyalkanoates production process with mixed microbial cultures fed on pyrolytic products of wastewater treatment sludge

    Get PDF
    A "cradle-to-grave" life cycle assessment is performed to identify the environmental issues of polyhydroxyalkanoates (PHAs) produced through a hybrid thermochemical-biological process using anaerobically digested sewage sludge (ADSS) as feedstock. The assessment includes a measure of the energy performance of the process. The system boundary includes: (i) Sludge pyrolysis followed by volatile fatty acids (VFAs) production; (ii) PHAs-enriched biomass production using a mixed microbial culture (MMC); (iii) PHAs extraction with dimethyl carbonate; and iv) PHAs end-of-life. Three scenarios differing in the use of the syngas produced by both pyrolysis and biochar gasification, and two more scenarios differing only in the external energy sources were evaluated. Results show a trade-off between environmental impacts at global scale, such as climate change and resources depletion, and those having an effect at the local/regional scale, such as acidification, eutrophication, and toxicity. Process configurations based only on the sludge-to-PHAs route require an external energy supply, which determines the highest impacts with respect to climate change, resources depletion, and water depletion. On the contrary, process configurations also integrating the sludge-to-energy route for self-sustainment imply more onsite sludge processing and combustion; this results in the highest values of eutrophication, ecotoxicity, and human toxicity. There is not a categorical winner among the investigated configurations; however, the use of a selected mix of external renewable sources while using sludge to produce PHAs only seems the best compromise. The results are comparable to those of both other PHAs production processes found in the literature and various fossil-based and bio-based polymers, in terms of both non-biogenic GHG emissions and energy demand. Further process advancements and technology improvement in high impact stages are required to make this PHAs production process a competitive candidate for the production of biopolymers on a wide scale

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers

    Get PDF
    The bioavailability of soy isoflavones depends on the composition of the microflora for each subject. Bacteria act on different isoflavones with increased or reduced absorption and cause biotransformation of these compounds into metabolites with higher biological activity. S-equol is the most important metabolite and only 25–65 % of the population have the microflora that produces this compound. The presence of equol-producing bacteria in soy product consumers means that the consumption of such products for prolonged periods leads to lower cardiovascular risk, reduced incidence of prostate and breast cancer, and greater relief from symptoms related to the menopause such as hot flushes and osteoporosis

    Prevalence of pemphigus and pemphigoid autoantibodies in the general population

    Get PDF
    Background: Mucocutaneous blistering is characteristic of autoimmune bullous dermatoses (AIBD). Blisters are caused by autoantibodies directed against structural components of the skin. Hence, detection of specific autoantibodies has become a hallmark for AIBD diagnosis. Studies on prevalence of AIBD autoantibodies in healthy individuals yielded contradictory results. Methods: To clarify this, samples from 7063 blood donors were tested for presence of anti-BP180-NC16A, anti-BP230 and anti-Dsg1/3 IgG by indirect immunofluorescence (IF) microscopy using a biochip. Results: Cumulative prevalence of these autoantibodies was 0.9 % (CI: 0.7-1.1 %), with anti-BP180-NC16A IgG being most prevalent. Validation of IF findings using ELISA confirmed presence of autoantibodies in 7/15 (anti-Dsg1), 6/7 (anti-Dsg3), 35/37 (anti-BP180-NC16A) and 2/3 (anti-BP230) cases. Moreover, in 16 samples, anti-BP180-NC16A autoantibody concentrations exceeded the cut-off for the diagnosis of bullous pemphigoid. Interestingly, these anti-BP180-NC16A autoantibodies from healthy individuals formed immune complexes with recombinant antigen and dose-dependently activated neutrophils in vitro. However, fine-epitope mapping within NC16A showed a different binding pattern of anti-BP180-NC16A autoantibodies from healthy individuals compared to bullous pemphigoid patients, while IgG subclasses were identical. Conclusions: Collectively, we here report a low prevalence of AIBD autoantibodies in a large cohort of healthy individuals. Furthermore, functional analysis shows differences between autoantibodies from healthy donors and AIBD patients

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
    • …
    corecore