170 research outputs found

    Cops, Teachers, and the Art of the Impossible: Explaining the lack of diffusion of impossible job innovations

    Get PDF
    In their now classic Impossible Jobs in Public Management, Hargrove and Glidewell (1990) argue that public agencies with limited legitimacy, high conflict, low professional authority, and weak agency myths have essentially impossible jobs. Leaders of such agencies can do little more than cope, which is also a theme of James Q. Wilson (1989), among others. Yet in the years since publication of Impossible Jobs, one such position, that of police commissioner has proven possible. Over a sustained 17-year period, the New York City Police Department has achieved dramatic reductions in crime with relatively few political repercussions, as described by Kelling and Sousa (2001). A second impossible job discussed by Wilson and also by Frederick Hess (1999), city school superintendent, has also proven possible, with Houston and Edmonton having considerable academic success educating disadvantaged children. In addition, Atlanta and Pittsburgh enjoyed significant success in elementary schooling, though the gains were short-lived for reasons we will describe. More recently, under Michelle Rhee, Washington D.C. schools have made the most dramatic gains among city school systems. These successes in urban crime control and public schooling have not been widely copied. Accordingly, we argue that the real conundrum of impossible jobs is why agency leaders fail to copy successful innovations. Building on the work of Teodoro (2009), we will discuss how the relative illegitimacy of clients and inflexibility of personnel systems combine with the professional norms, job mobility and progressive ambition of agency leaders to limit the diffusion of innovations in law enforcement and schooling. We will conclude with ideas about how to overcome these barriers

    Machine learning and the physical sciences

    No full text
    Machine learning encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. We review in a selective way the recent research on the interface between machine learning and physical sciences. This includes conceptual developments in machine learning (ML) motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross-fertilization between the two fields. After giving basic notion of machine learning methods and principles, we describe examples of how statistical physics is used to understand methods in ML. We then move to describe applications of ML methods in particle physics and cosmology, quantum many body physics, quantum computing, and chemical and material physics. We also highlight research and development into novel computing architectures aimed at accelerating ML. In each of the sections we describe recent successes as well as domain-specific methodology and challenges

    Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Get PDF
    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base

    Spitzer Observations of IC 2118

    Get PDF
    IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, ~5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this region in 7 mid- and far-infrared bands using the Spitzer Space Telescope and in 4 bands in the optical using the U. S. Naval Observatory 40-inch telescope. We find infrared excesses in 4 of the 6 previously-known T Tauri stars in our combined infrared maps, and we find 6 entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the "head" of the nebula, within the most massive molecular cloud of the region.Comment: Accepted to Ap

    Corpora amylacea are associated with tau burden and cognitive status in Alzheimer\u27s disease

    Get PDF
    Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer\u27s disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden

    Free Schools in England: ‘Not Unlike other Schools’?

    Get PDF
    The aim of this article is to investigate the argument that choice and competition will unleash entrepreneurial innovation in free schools. Free schools were introduced as a subset of the Academies by the Conservative–Liberal Democrat Coalition government, following the general election in 2010. The government made it possible for non-state providers to set up their own independent, state-funded schools in order to create more choice, competition and innovation. We conclude that a higher level of substantive innovation is taking place in regards to management practices than in respect of curriculum and pedagogical practices. Innovation in curriculum and pedagogical practices is very limited. Creating a free school offer that seems to differ from other schools appears to be done through marketing and branding rather than innovation. We argue that parents, OFSTED, and the relative isolation of free schools constrain innovation from taking place

    Does Private Islamic Schooling Promote Terrorism? An Analysis of the Educational Background of Successful American Homegrown Terrorists

    Get PDF
    Some commentators argue that private religious schools are less likely to inculcate the attributes of good citizenship than traditional public schools, specifically proposing that private Islamic schools are relatively more likely to produce individuals sympathetic to terrorism. This study offers a preliminary examination of the question by studying the educational backgrounds of Western educated terrorists. While data are limited, in accord with prior work findings indicate the vast majority of both Islamic and reactionary terrorists attended traditional public schools and had no religious education; hence findings suggest that early religious training and identification may actually encourage prosocial behavior

    Cryo-electron tomography of cells: connecting structure and function

    Get PDF
    Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell
    corecore