227 research outputs found

    Analysis of Electronic Data Systems, Incorporated Credit Union Processing Division

    Get PDF
    Electronic Data Systems Incorporated (EDS) is an information processing company that has grown to one of the largest of its kind in the world. Part of the mission statement is to continue growth by providing new information management and communications capabilities, and to expand into new areas that build upon existing expertise and customer base. With this in mind, EDS assembled a professional staff, developed very large scale computer systems, and installed a state of the art telecommunications system. In the early 1980s, EDS entered a new market by acquiring several of the largest credit union processors -- eight acquisitions in five years. This strategy gave EDS a 25% market share, ten regional data processing centers and more than twenty credit union processing packages. By 1985, EDS had determined there were no more processors as likely candidates for further acquisitions. With the acquisition phase over, what will be the strategic direction of the next phase for EDS/s credit union processing products? One approach is to develop an entirely new credit union processing package and convert the existing customer base to it over the next five years. This would eliminate duplication of hardware resources and software services. It would also give EDS a new product platform to carry them into the next century

    Book Review Essay: Handbook on Gender in Asia

    Get PDF

    CAR Research Memorandum: The Impact on the U.S. Economy of a Major Contraction of the Detroit Three Automakers

    Get PDF

    Ionic liquid extraction unveils previously occluded humic-bound iron in peat soil pore water

    Get PDF
    Globally, peatland ecosystems store tremendous amounts of C relative to their extent on the landscape, largely owing to saturated soils which limit decomposition. While there is still considerable uncertainty regarding CO2 production potential below the water table in peatland ecosystems, extracellular Fe reduction has been suggested as a dominant pathway for anaerobic metabolism. However, colorimetric methods commonly used to quantitate Fe and partition between redox species are known to be unreliable in the presence of complex humic substances, which are common in peatland pore water. We evaluated both the standard o-phenanthroline (o-P) Method and an ionic liquid extraction (ILE) Method followed by quantitation with inductively coupled plasma optical emission spectrometry (ICP–OES) to compare total Fe recovery and Fe2+/Fe3+ ratios in four distinct peatland ecosystems, ranging from rich fen to bog. While total Fe concentrations measured with ILE and o-P were correlated, the ILE method proved to be superior in both total Fe quantitation and in separately quantifying ferric (Fe3+) and ferrous (Fe2+) iron. In peat pore water, the o-P Method underestimated Fe3+ by as much as 100%. A multivariate approach utilizing fluorescence- and ultraviolet (UV)–visable (Vis) spectroscopy identified indices of dissolved organic matter (DOM) humification and redox status that correlated with poor performance of the o-P Method in peat pore water. Where these interferences are present, we suggest that site-specific empirical correction factors for quantitation of total Fe by o-P can be created from ILE of Fe, but recommend ILE for accurate appraisals of iron speciation and redox processes

    Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in FEMS Microbiology Ecology 82 (2012): 242–253, doi:10.1111/j.1574-6941.2011.01253.x.Mixotrophy, the combination of phototrophy and heterotrophy within the same individual, is widespread in oceanic systems. Yet, neither the presence nor ecological impact of mixotrophs has been identified in an Arctic marine environment. We quantified nano- and picoplankton during early autumn in the Beaufort Sea and Canada Basin and determined relative rates of bacterivory by heterotrophs and mixotrophs. Results confirmed previous reports of low microbial biomass for Arctic communities in autumn. The impact of bacterivory was relatively low, ranging from 0.6 x 103 to 42.8 x 103 bacteria mL-1 day-1, but it was often dominated by pico- or nano-mixotrophs. From 1-7% of the photosynthetic picoeukaryotes were bacterivorous, while mixotrophic nanoplankton abundance comprised 1-22% of the heterotrophic and 2-32% of the phototrophic nanoplankton abundance, respectively. The estimated daily grazing impact was usually < 5% of the bacterial standing stock, but impacts as high as 25% occurred. Analysis of denaturing gradient gel electrophoresis band patterns indicated that communities from different depths at the same site were appreciably different, and that there was a shift in community diversity at the midpoint of the cruise. Sequence information from DGGE bands reflected microbes related to ones from other Arctic studies, particularly from the Beaufort Sea.Funding for participation in the 2008 cruise was provided by the Woods Hole Oceanographic Institution Arctic Research Initiative, with additional support from National Science Foundation Grants OPP-0838847 (RWS) and OPP-0838955 (RJG)

    Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098

    The regional and global significance of nitrogen removal in lakes and reservoirs

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 143-157, doi:10.1007/s10533-008-9272-x.Human activities have greatly increased the transport of biologically available N through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N yr-1 from watersheds globally. Small lakes (< 50 km2) were critical in the analysis, retaining almost half (9.3 Tg N yr-1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain approximately 33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area : lake or reservoir surface area), higher apparent settling velocities for N, and greater N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.The NSF26 Research Coordination Network on denitrification for support for collaboration (award number DEB0443439 to S.P. Seitzinger and E.A. Davidson). This project was also supported by grants to J.A. Harrison from California Sea Grant (award number RSF8) and from the U.S. Geological Survey 104b program and R. Maranger (FQRNT Strategic Professor)

    Viruses in extreme environments

    No full text
    The original publication is available at www.springerlink.comInternational audienceThe tolerance limits of extremophiles in term of temperature, pH, salinity, desiccation, hydrostatic pressure, radiation, anaerobiosis far exceed what can support non-extremophilic organisms. Like all other organisms, extremophiles serve as hosts for viral replication. Many lines of evidence suggest that viruses could no more be regarded as simple infectious ‘‘fragments of life'' but on the contrary as one of the major components of the biosphere. The exploration of niches with seemingly harsh life conditions as hypersaline and soda lakes, Sahara desert, polar environments or hot acid springs and deep sea hydrothermal vents, permitted to track successfully the presence of viruses. Substantial populations of double-stranded DNA virus that can reach 109 particles per milliliter were recorded. All these viral communities, with genome size ranging from 14 kb to 80 kb, seem to be genetically distinct, suggesting specific niche adaptation. Nevertheless, at this stage of the knowledge, very little is known of their origin, activity, or importance to the in situ microbial dynamics. The continuous attempts to isolate and to study viruses that thrive in extreme environments will be needed to address such questions. However, this topic appears to open a new window on an unexplored part of the viral world

    Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    Get PDF
    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.This research was supported by Junta de Andalucía (Excelencia P07-CVI-02598 to PC, and P09-RNM-5376 to JMMS), the Spanish Ministries of Medio Ambiente, Rural y Marino (PN2009/067 to PC) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681 to PC), the ERC Advanced Grant project number 250254 “MINOS” (to GB), and two Spanish government grants (to JADM and FJB)
    corecore