269 research outputs found

    Neurons of origin and fiber trajectory of amygdalofugal projections to the medial preoptic area in syrian hamsters

    Full text link
    The amygdaloid neurons of origin and the trajectory of amygdaloid fibers to the medial preoptic area of the adult male Syrian hamster were identified by using horseradish peroxidase (HRP) histochemistry. After iontophoresis of HRP into the medial preoptic area, retrogradely labeled amygdaloid neurons were located in the dorsal and caudal parts of the medial amygdaloid nucleus and throughout the amygdalohippocampal area. No amygdaloid neurons were labeled after HRP applications confined to the most rostral portion of the medial preoptic area (anterior to the body of the anterior commissure). Following more caudal medial preoptic area injections (body of the anterior commissure to the suprachiasmatic nucleus) the distribution of retrogradely labeled cells in the medial amygdaloid nucleus and the amygdalohippocampal area revealed no topographic organization of the amygdalopreoptic connections. When amygdaloid neurons were labeled, the amygdalohippocampal area contained two to five times as many HRP-filled cells as the medial amygdaloid nucleus. Retrogradely transported HRP could be followed from the medial preoptic area to the amygdala through fibers in the dorsomedial quadrant of the stria terminalis. In addition, electrolytic lesions of the stria terminalis prior to iontophoresis of HRP into the medial preoptic area prevented retrograde transport to neurons in both the dorsocaudal medial amygdaloid nucleus and the amygdalohippocampal area. These results confirm earlier observations describing the location of autoradiographically labeled efferents from the medial amygdaloid nucleus to the medial preoptic area and provide new information about the restricted region within the medial amygdaloid nucleus from which these projections arise. They also suggest that, unlike the projections from the medial amygdaloid nucleus to the bed nucleus of the stria terminalis, the efferents to the medial preoptic area travel entirely in the stria terminalis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50043/1/902800106_ftp.pd

    Reefs at Risk: A Map-Based Indicator of Threats to the Worlds Coral Reefs

    Get PDF
    This report presents the first-ever detailed, map-based assessment of potential threats to coral reef ecosystems around the world. "Reefs at Risk" draws on 14 data sets (including maps of land cover, ports, settle-ments, and shipping lanes), information on 800 sites known to be degraded by people, and scientific expertise to model areas where reef degradation is predicted to occur, given existing human pressures on these areas. Results are an indicator of potential threat (risk), not a measure of actual condition. In some places, particularly where good management is practiced, reefs may be at risk but remain relatively healthy. In others, this indicator underestimates the degree to which reefs are threatened and degraded.Our results indicate that:Fifty-eight percent of the world's reefs are poten-tially threatened by human activity -- ranging from coastal development and destructive fishing practices to overexploitation of resources, marine pollution, and runoff from inland deforestation and farming.Coral reefs of Asia (Southeastern); the most species-rich on earth, are the most threatened of any region. More than 80 percent are at risk (undermedium and high potential threat), and over half are at high risk, primarily from coastal development and fishing-related pressures.Overexploitation and coastal development pose the greatest potential threat of the four risk categories considered in this study. Each, individually, affects a third of all reefs.The Pacific, which houses more reef area than any other region, is also the least threatened. About 60 percent of reefs here are at low risk.Outside of the Pacific, 70 percent of all reefs are at risk.At least 11 percent of the world's coral reefs contain high levels of reef fish biodiversity and are under high threat from human activities. These "hot spot" areas include almost all Philippine reefs, and coral communities off the coasts of Asia, the Comoros, and the Lesser Antilles in the Caribbean.Almost half a billion people -- 8 percent of the total global population -- live within 100 kilometers of a coral reef.Globally, more than 400 marine parks, sanctuaries, and reserves (marine protected areas) contain coral reefs. Most of these sites are very small -- more than 150 are under one square kilometer in size. At least 40 countries lack any marine protected areas for conserving their coral reef systems

    Regionally Distinct N -Methyl-D-Aspartate Receptors Distinguished by Quantitative Autoradiography of [ 3 H]MK-801 Binding in Rat Brain

    Full text link
    Quantitative autoradiography of [ 3 H]MK-801 binding was used to characterize regional differences in N -methyl-d-aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [ 3 H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [ 3 H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 Μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 Μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 Μ M . In the presence of added glutamate (3 Μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [ 3 H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [ 3 H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 Μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 Μ M . In the presence of added glycine (1 Μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [ 3 H]MK-801 binding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65616/1/j.1471-4159.1993.tb03295.x.pd

    The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

    Get PDF
    It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols

    Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation

    Get PDF
    The radiosensitizing activity of S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was assessed in a model of non-metabolic hypoxia achieved in an atmosphere of 95% nitrogen–5% carbon dioxide. A 10 min preincubation of hypoxic EMT-6 cells (10 × 106 ml−1) with 0.1 and 1 mM SNAP before radiation resulted in an enhancement ratio of 1.6 and 1.7 respectively. The level of spontaneous NO release, measured by a NO specific microsensor, correlated directly with the concentration of SNAP and was enhanced 50 times in the presence of cells. Dilution of the cell suspension from 10 to 0.1 × 106 ml−1 resulted in a 16-fold decline in NO release, but only a twofold decrease in radiosensitization was observed. Preincubation of hypoxic cells with SNAP for 3 min up to 30 min caused an increasing radiosensitizing effect. Extended preincubation of 100 min led to the loss of radiosensitization although the half-life of SNAP is known to be 4–5 h. Taken together, these observations suggest that SNAP generates NO predominantly by a bioreductive mechanism and that its biological half-life is unlikely to exceed 30 min. The lack of correlation between free NO radical and radiosensitizing activity may reflect a role of intracellular NO adducts which could contribute to radiosensitization as well. © 1999 Cancer Research Campaig

    I-Support: A robotic platform of an assistive bathing robot for the elderly population

    Get PDF
    In this paper we present a prototype integrated robotic system, the I-Support bathing robot, that aims at supporting new aspects of assisted daily-living activities on a real-life scenario. The paper focuses on describing and evaluating key novel technological features of the system, with the emphasis on cognitive human–robot interaction modules and their evaluation through a series of clinical validation studies. The I-Support project on its whole has envisioned the development of an innovative, modular, ICT-supported service robotic system that assists frail seniors to safely and independently complete an entire sequence of physically and cognitively demanding bathing tasks, such as properly washing their back and their lower limbs. A variety of innovative technologies have been researched and a set of advanced modules of sensing, cognition, actuation and control have been developed and seamlessly integrated to enable the system to adapt to the target population abilities. These technologies include: human activity monitoring and recognition, adaptation of a motorized chair for safe transfer of the elderly in and out the bathing cabin, a context awareness system that provides full environmental awareness, as well as a prototype soft robotic arm and a set of user-adaptive robot motion planning and control algorithms. This paper focuses in particular on the multimodal action recognition system, developed to monitor, analyze and predict user actions with a high level of accuracy and detail in real-time, which are then interpreted as robotic tasks. In the same framework, the analysis of human actions that have become available through the project’s multimodal audio–gestural dataset, has led to the successful modeling of Human–Robot Communication, achieving an effective and natural interaction between users and the assistive robotic platform. In order to evaluate the I-Support system, two multinational validation studies were conducted under realistic operating conditions in two clinical pilot sites. Some of the findings of these studies are presented and analyzed in the paper, showing good results in terms of: (i) high acceptability regarding the system usability by this particularly challenging target group, the elderly end-users, and (ii) overall task effectiveness of the system in different operating modes

    Autoradiographic Characterization and Localization of Quisqualate Binding Sites in Rat Brain Using the Antagonist [ 3 H]6-Cyano-7-Nitroquinoxaline-2,3-Dione: Comparison with ( R,S )-[ 3 H]Α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Binding Sites

    Full text link
    Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non- N -methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [ 3 H]6-cyano-7-nitro-quinoxaline-2,3-dione ([ 3 H]-CNQX) in rat brain sections. [ 3 H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [ 3 H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a K D = 67 ± 9.0 n M and B max = 3.56 ± 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, ( R,S )- Α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [ 3 H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [ 3 H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with K D1 = 9.0 ± 3.5 n M , B max = 0.15 ± 0.05 pmol/mg protein, K D2 = 278 ± 50 n M , and B max = 1.54 ± 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [ 3 H]CNQX binding sites correlated to the binding of L-[ 3 H]glutamate to quisqualate receptors and to sites labeled with [ 3 H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [ 3 H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [ 3 H]AMPA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65634/1/j.1471-4159.1990.tb01925.x.pd

    Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7

    Get PDF
    Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4 degrees C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors
    • …
    corecore