66 research outputs found

    Gobernanza para el desarrollo y la sostenibilidad de los destinos turísticos: una revisión de la literatura con ToS

    Get PDF
    Governance offers great potential for the management of tourist destinations, their sustainability, community participation, the distribution of benefits and their conservation. However, it is relevant that governance be implemented in an adaptive manner, so conceptual development and its different forms of local implementation must be thoroughly understood. To date, a synthesis of the governance literature using the Tree of Science (ToS) methodology has not been performed, and in doing so, the authors provide a foundation for tourism researchers to draw on various lines for future research. The objective of this document is to review scientific articles on tourism governance and sustainability, exploring the relevant literature and presenting different lines to develop new research. 380 relevant articles were found in the Scopus database, which were processed in ToS, which allowed the identification of the Root (10 art), the Trunk (28 art) and three Branches (52 art). Three major research perspectives were found: i) tourism development and sustainability, ii) governance actors, and iii) distribution of benefits and equity.La gobernanza ofrece un gran potencial para la gestión de los destinos turísticos, su sostenibilidad, la participación comunitaria, la distribución de beneficios y su conservación.  Sin embargo, es relevante que la gobernanza se implemente de una manera adaptativa por lo que se debe conocer a profundidad el desarrollo conceptual y sus diferentes formas de implementación local. Hasta la fecha, no se ha realizado una síntesis de la literatura sobre gobernanza con la metodología Tree of Science (ToS), y al hacerlo, los autores proporcionan una base para que los investigadores del turismo se basen en diversas líneas para investigaciones futuras. El objetivo de este documento es revisar artículos científicos sobre gobernanza y la sostenibilidad turística, explorando la literatura relevante y presentando diferentes líneas para desarrollar nuevas investigaciones. Se encontraron 380 artículos relevantes en la base de datos Scopus, que fueron procesados en ToS, lo que permitió la identificación de la Raíz (10 art), el Tronco (28 art) y tres Ramas (52 art). Se hallaron tres grandes perspectivas de investigación: i) desarrollo y sostenibilidad del turismo, ii) actores de la gobernanza y iii) distribución de beneficios y equidad

    Changes in biomarkers of redox status in serum and saliva of dogs with hypothyroidism

    Get PDF
    Hypothyroidism is the most common endocrine disorder diagnosed in dogs, leading to deleterious effects on a dog's life quality. This study aims to evaluate changes in the redox status in canine hypothyroidism. For this purpose, a comprehensive panel of antioxidants and oxidants biomarkers were measured in serum and saliva of 23 dogs with hypothyroidism, 21 dogs with non-thyroidal illness, and 16 healthy dogs. Among the antioxidants, cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), thiol, paraoxonase type 1 (PON-1) and glutathione peroxidase (GPx) were determined in serum and CUPRAC, ferric reducing ability of saliva (FRAS) and TEAC in saliva. The oxidant biomarkers included were total oxidant status (TOS), peroxide-activity (POX-Act), reactive oxygen-derived compounds (d-ROMs), advanced oxidation protein products (AOPP), and thiobarbituric acid reactive substances (TBARS) in serum and AOPP and TBARS in saliva. Results showed a significantly higher TEAC, PON-1, GPx, TOS, POX-Act, and d-ROMs, and a significantly lower AOPP in serum of dogs with hypothyroidism. Meanwhile, significantly lower FRAS and AOPP were observed in saliva of dogs with hypothyroidism. Once salivary concentrations were corrected based on their total protein concentrations, the only analyte showing significant changes was TBARS which was significantly higher in dogs with hypothyroidism. Our results show that dogs with hypothyroidism present alterations in the redox status in both serum and saliva. This study should be considered a preliminary study and further research addressing these changes should be made using larger populations. The online version contains supplementary material available at 10.1186/s12917-023-03586-4

    Neuromuscular and mobility responses to a vibration session in hypoxia in multiple sclerosis

    Get PDF
    The aim of this study was to investigate the acute effects of vibration training (WBVT) under hypoxic and normoxic conditions on the voluntary rate of force development (RFD), balance and muscle oxygen saturation (SMO2) in persons with Multiple Sclerosis (MS). 10 participants completed the study (30 % males, 44.4±7.7 years, 164.3±8.9cm, 65.2±11.1kg, 2.5±1.3 Expanded Disability Status Scale, 24.1± 4.0 kg.m− 2 BMI). Maximal force, RFD during isometric knee extension, static balance with eyes open and closed and sit-to-stand test were evaluated before and immediately after one session of WBVT (12 60-s bout of vibration; frequency 35Hz; amplitude 4mm; 1-min rest intervals) under both normoxic and hypoxic conditions. In addition, SMO2 of the gastrocnemius lateralis was assessed during each condition. No changes were found in force, static balance and sit-to-stand test. Time-to-peak RFD increased in the left leg (p = 0.02) and tended to increase in the right leg (p = 0.06) after the hypoxic session. SMO2 resulted in significant increases from the initial to final intervals of the WBVT under both hypoxic and normoxic conditions (p < 0.05). Increases in SMO2 during WBVT demonstrates muscle work that may contribute to the observed muscle adaptations in long-term WBVT programs without inducing decreases in neuromuscular activation, physical function and balance within a session

    CryoEM structures of the SARS-CoV-2 spike bound to antivirals

    Get PDF
    (Póster 63) Background: Single-particle cryoelectron microscopy (cryoEM) has played a key role in the fight against COVID-19. The molecular mechanisms for the action of some of the currently approved drugs targeting the SARS-CoV-2 RNA-dependent RNA polymerase, the fast developments of the current available vaccines and antibody therapies are examples of the impact of the knowledge gained from the cryoEM structures of SARS-CoV-2 proteins in complex with proteins (ACE2 or antibodies/nanobodies) or small compounds. Our aim is to use this technology to understand structurally how certain antiviral compounds and proteins targeting the spike may inhibit viral entry. Methods: 1) Production of wild-type and mutated spike and ACE2 proteins using baculovirus/insect cells. 2) Spike binding kinetics: protein-protein and protein-small compound interactions measured by BLI Biolayer interferometry (BLI) and/or microscale Thermophoresis (MST). 3) Buffer optimization for cryoEM grid preparation of spike variants by thermal shift assays and negative-staining electron microscopy (NSEM). These techniques are also used to adjust the molar ratio of spike:ACE2 and spike:small-compound complexes. 4) Structural characterization by cryoEM. Results: At IBV-CSIC we have created a pipeline for the production and characterization of several spike variants and ACE2 decoys. While this pipeline is described in detail in other oral/poster communications, this communication is centered around one of the pillars within this pipeline; the structural characterization of possible drug candidates bound to the SARS-CoV-2 spike by cryoEM. In this way, we have successfully solved structures of the spike bound to: A) protein inhibitors as ACE2 decoys; B) a small inhibitory compound; C) mixtures of proteins and small-compound (nanobody-heparan derivative) working cooperatively as inhibitors. These protein/drug candidates were previously selected based on the results obtained in our interactomics platform, whereas their concentration and the buffer conditions for cryoEM grids preparation were established based on thermal shift assays and NSEM. Conclusion: CryoEM is a powerful tool to directly visualize the effect caused by a potential drug on a protein target. In a short period of time we have developed this technique in our institute to be applied to the SARS-CoV-2 spike protein, not only to obtain high-resolution structures of SARS- CoV-2 spike variants of concern (see WP4) but also to obtain the structures of complexes of the spike with various inhibitory compounds of very different nature

    Allele and haplotype frequencies of HLA-A, -B, -C, -DRB1, -DQB1 and -DQA1 in Castile and Leon region from North West of Spain

    Get PDF
    HLA studies have been used to determine the admixture of different populations within the Iberian Peninsula including neighbouring regions with shared origins, such as Portugal and Castile and Leon. These studies certainly can be used to study human migration that could establish populations currently settled according to genetic distant analysis based on the HLA diversity and language variety.This work was supported by the “Gerencia Regional de Salud de Castilla y Leon” (GRS 2080/A/19, 2019) and (GRS COVID 70/A/20, 2020)

    Use of an interactomics pipeline to assess the potential of new antivirals against SARS-CoV-2

    Get PDF
    (Póster 80) Background: In late 2019 SARS-CoV-2 infection appeared in China, becoming a pandemic in 2020. The scientific community reacted rapidly, characterizing the viral genome and its encoded proteins, aiming at interfering with viral spreading with vaccines and antivirals. The receptor binding domain (RBD) of the viral spike (S) protein plays a key role in cell entry of the virus. It interacts with the cellular receptor for SARS-CoV-2, the membrane-bound human Angiotensin Converting Ectoenzyme 2 (ACE2). With the goal of monitoring interference with this interaction by potential antiviral drugs, we have set up at the Institute for Biomedicine of Valencia (IBV-CSIC) an interactomics pipeline targeting the initial step of viral entry. Methods: For the production part of the pipeline (pure RBD/Spike variants and soluble ACE2), see parallel poster. These proteins allowed monitoring of the RBD/Spike-ACE2 interaction in presence or absence of potential inhibitors. Thermal shift assays (thermofluor) were used for initial detection of compound binding at different ligand/protein ratios and media conditions (pH, buffers, chaotropic agents). Next, binding affinity and on/off kinetics were characterized using Biolayer interferometry (BLI), Surface plasmon resonance (SPR), Microscale Thermophoresis (MST) and/or Isothermal titration calorimetry (ITC). For protein-protein interactions, we mostly used BLI or SPR, whereas for proteinsmall compound analysis MST was generally best. Protein aggregation-dissociation was monitored by size exclusion chromatography with multiangle light scattering (SEC-MALS). Results: Candidates proven by thermal shift assays to bind to RBD/spike protein without affecting the integrity of these proteins were subjected to quantitative affinity measurements. We successfully demonstrated that BLI, SPR and MST can be used to follow the interactions between SARS-CoV- 2 proteins and the putative drug candidates, as well as to monitor the interference with Spike-Ace2 binding of potential drug candidates. While BLI and SPR displayed reproducible results in the measurement of protein-protein interaction (applied to soluble ACE2 used as a decoy), they were less suitable for measuring the binding of small molecules. The fact that most small compounds were only soluble in organic solvents made difficult to obtain a low signal/noise while using BLI, necessary for the assessment of the binding. We overcame that problem by using MST. After dilution of the compounds to the final experimental concentrations, the technique could detect a significant binding signal enough to calculate binding parameters. MST also allowed to measure the degree of interference that each compound was having on RBD/Spike-ACE2 interaction. The pipeline has been customized and validated with compounds of very different nature provided by different groups belonging to the PTI and other external laboratories, as well as with different Ace2 decoys designed at the IBV. Conclusions: The interactomics platform at the IBV has been used to successfully develop two different antiviral approaches in order to fight COVID-19. It has allowed technical specialization of the staff as well as the development, in a very short period of time, of two ambitious projects. We have demonstrated that we can perform interactomic characterization for challenging projects as well as provide information about binding of antivirals to potential new SARS-CoV-2 variants of concern

    Un ataque combinado químico, virológico, biofísico y estructural hace posible la obtención de nuevos inhibidores de entrada celular de SARS-CoV-2 y la caracterización de su mecanismo de inhibición

    Get PDF
    Resumen del trabajo presentado al 45º Congreso de la Sociedad Española de Bioquímica y Biología Molecular (SEBBM), celebrado en Zaragoza del 5 al 8 de septiembre de 2023.IBV-COVID19 Pipeline: C.Espinosa, N.Gougeard, M.P.Hernández-Sierra, A.Rubio-del-Campo, R.Ruiz-Partida, L.Villamayor.El virus SARS-CoV-2 causa el COVID-19 al infectar las células a través de la interacción de la proteína de su espícula (S) con el receptor celular enzima convertidora de angiotensina 2 (ACE2). Para buscar inhibidores de este paso clave en la infección viral, examinamos una biblioteca interna (IQM-CSIC, Madrid) de compuestos multivalentes derivados de triptófano, primero usando pseudopartículas de Virus de Estomatits Vesicular que expresaban S (I2SysBio, UV y CSIC, Valencia), identificando un compuesto como potente inhibidor de entrada no citotóxico. La optimización química (IQM-CSIC) generó otros dos potentes inhibidores de entrada no citotóxicos que, como 2, también inhibieron la entrada celular de SARS-CoV-2 genuino (I2SysBio). Los estudios con proteínas recombinantes puras (IBV-CSIC, Valencia) usando termofluor y termoforesis de microescala revelaron la unión de estos compuestos a S, y a su dominio de unión al receptor producido separadamente, probando interferencia con la interacción con ACE2. La criomicroscopía electrónica de S (IBV-CSIC), libre o unido al compuesto activo, arrojó luz sobre los mecanismos de inhibición por estos compuestos de la entrada viral a la célula. Esta actividad triinstitucional combinada ha identificado y caracterizado una nueva clase de inhibidores de entrada de SARS-CoV-2 de claro potencial preventivo o terapéutico de COVID-19.ECNextGeneration EUfund 2020/2094 de CSIC/PTI Salud Global; Crue/CSIC/Santander Fondo Supera Covid-19;CSIC-COV19-082; CIBERER-ISCIIICOV20/00437; Covid19-SCI/GValenciana (RG);PID2020- 120322RB-C21 (VR) y PID2020-116880GB-I00 (JLLl) Agenc. Estat Investig.Peer reviewe

    The structural role of SARS-CoV-2 genetic background in the emergence and success of spike mutations: The case of the spike A222V mutation

    Get PDF
    The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness

    Standardized incidence ratios and risk factors for cancer in patients with systemic sclerosis: Data from the Spanish Scleroderma Registry (RESCLE)

    Get PDF
    Aim: Patients with systemic sclerosis (SSc) are at increased risk of cancer, a growing cause of non-SSc-related death among these patients. We analyzed the increased cancer risk among Spanish patients with SSc using standardized incidence ratios (SIRs) and identified independent cancer risk factors in this population. Material and methods: Spanish Scleroderma Registry data were analyzed to determine the demographic characteristics of patients with SSc, and logistic regression was used to identify cancer risk factors. SIRs with 95% confidence intervals (CIs) relative to the general Spanish population were calculated. Results: Of 1930 patients with SSc, 206 had cancer, most commonly breast, lung, hematological, and colorectal cancers. Patients with SSc had increased risks of overall cancer (SIR 1.48, 95% CI 1.36-1.60; P < 0.001), and of lung (SIR 2.22, 95% CI 1.77-2.73; P < 0.001), breast (SIR 1.31, 95% CI 1.10-1.54; P = 0.003), and hematological (SIR 2.03, 95% CI 1.52-2.62; P < 0.001) cancers. Cancer was associated with older age at SSc onset (odds ratio [OR] 1.22, 95% CI 1.01-1.03; P < 0.001), the presence of primary biliary cholangitis (OR 2.35, 95% CI 1.18-4.68; P = 0.015) and forced vital capacity <70% (OR 1.8, 95% CI 1.24-2.70; P = 0.002). The presence of anticentromere antibodies lowered the risk of cancer (OR 0.66, 95% CI 0.45-0.97; P = 0.036). Conclusions: Spanish patients with SSc had an increased cancer risk compared with the general population. Some characteristics, including specific autoantibodies, may be related to this increased risk

    C-2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV-2 through Interaction with the Viral Spike (S) Protein

    Get PDF
    26 páginas, 6 figuras, 2 tablas.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19.Funding for this project was provided by grants from the European Commission NextGenerationEU fund (EU 2020/2094), through CSIC’s Global Health Platform (PTI Salud Global), Crue-CSIC-Santander Fondo Supera Covid-19, and CSIC grant (CSIC-COV19-082) to R.G., M.-J-P.-P., V.R., J.B., A.M., and J.-L.L. and CIBERER, Instituto de Salud Carlos III (COV20/00437) to V.R., J.B., A.M., and J.-L.L. In addition, this work was funded by grant (Covid_19-SCI) from the Generalitat Valenciana y Conselleria de Innovación, Universidades, Ciencia y Sociedad digital to R.G., and by grants PID2020-120322RB-C21 and PID2020-116880GB-I00 from the Agencia Estatal de Investigación of the Spanish Government to V.R. and J.-L.L., respectively.Peer reviewe
    corecore