4,776 research outputs found
Multi-site H-bridge breathers in a DNA--shaped double strand
We investigate the formation process of nonlinear vibrational modes
representing broad H-bridge multi--site breathers in a DNA--shaped double
strand.
Within a network model of the double helix we take individual motions of the
bases within the base pair plane into account. The resulting H-bridge
deformations may be asymmetric with respect to the helix axis. Furthermore the
covalent bonds may be deformed distinctly in the two backbone strands.
Unlike other authors that add different extra terms we limit the interaction
to the hydrogen bonds within each base pair and the covalent bonds along each
strand. In this way we intend to make apparent the effect of the characteristic
helicoidal structure of DNA. We study the energy exchange processes related
with the relaxation dynamics from a non-equilibrium conformation. It is
demonstrated that the twist-opening relaxation dynamics of a radially distorted
double helix attains an equilibrium regime characterized by a multi-site
H-bridge breather.Comment: 27 pages and 10 figure
The end-to-end testbed of the Optical Metrology System on-board LISA Pathfinder
LISA Pathfinder is a technology demonstration mission for the Laser
Interferometer Space Antenna (LISA). The main experiment on-board LISA
Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to
measure the differential acceleration between two free-falling test masses with
an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This
measurement is performed interferometrically by the Optical Metrology System
(OMS) on-board LISA Pathfinder. In this paper we present the development of an
experimental end-to-end testbed of the entire OMS. It includes the
interferometer and its sub-units, the interferometer back-end which is a
phasemeter and the processing of the phasemeter output data. Furthermore,
3-axes piezo actuated mirrors are used instead of the free-falling test masses
for the characterisation of the dynamic behaviour of the system and some parts
of the Drag-free and Attitude Control System (DFACS) which controls the test
masses and the satellite. The end-to-end testbed includes all parts of the LTP
that can reasonably be tested on earth without free-falling test masses. At its
present status it consists mainly of breadboard components. Some of those have
already been replaced by Engineering Models of the LTP experiment. In the next
steps, further Engineering Models and Flight Models will also be inserted in
this testbed and tested against well characterised breadboard components. The
presented testbed is an important reference for the unit tests and can also be
used for validation of the on-board experiment during the mission
Reducing sample variance: halo biasing, non-linearity and stochasticity
Comparing clustering of differently biased tracers of the dark matter
distribution offers the opportunity to reduce the cosmic variance error in the
measurement of certain cosmological parameters. We develop a formalism that
includes bias non-linearities and stochasticity. Our formalism is general
enough that can be used to optimise survey design and tracers selection and
optimally split (or combine) tracers to minimise the error on the
cosmologically interesting quantities. Our approach generalises the one
presented by McDonald & Seljak (2009) of circumventing sample variance in the
measurement of . We analyse how the bias, the noise,
the non-linearity and stochasticity affect the measurements of and explore
in which signal-to-noise regime it is significantly advantageous to split a
galaxy sample in two differently-biased tracers. We use N-body simulations to
find realistic values for the parameters describing the bias properties of dark
matter haloes of different masses and their number density.
We find that, even if dark matter haloes could be used as tracers and
selected in an idealised way, for realistic haloes, the sample variance limit
can be reduced only by up to a factor .
This would still correspond to the gain from a three times larger survey volume
if the two tracers were not to be split. Before any practical application one
should bear in mind that these findings apply to dark matter haloes as tracers,
while realistic surveys would select galaxies: the galaxy-host halo relation is
likely to introduce extra stochasticity, which may reduce the gain further.Comment: 21 pages, 13 figures. Published version in MNRA
Fisher Motion Descriptor for Multiview Gait Recognition
The goal of this paper is to identify individuals by analyzing their gait.
Instead of using binary silhouettes as input data (as done in many previous
works) we propose and evaluate the use of motion descriptors based on densely
sampled short-term trajectories. We take advantage of state-of-the-art people
detectors to define custom spatial configurations of the descriptors around the
target person, obtaining a rich representation of the gait motion. The local
motion features (described by the Divergence-Curl-Shear descriptor) extracted
on the different spatial areas of the person are combined into a single
high-level gait descriptor by using the Fisher Vector encoding. The proposed
approach, coined Pyramidal Fisher Motion, is experimentally validated on
`CASIA' dataset (parts B and C), `TUM GAID' dataset, `CMU MoBo' dataset and the
recent `AVA Multiview Gait' dataset. The results show that this new approach
achieves state-of-the-art results in the problem of gait recognition, allowing
to recognize walking people from diverse viewpoints on single and multiple
camera setups, wearing different clothes, carrying bags, walking at diverse
speeds and not limited to straight walking paths.Comment: This paper extends with new experiments the one published at
ICPR'201
Thermal diagnostic of the Optical Window on board LISA Pathfinder
Vacuum conditions inside the LTP Gravitational Reference Sensor must comply
with rather demanding requirements. The Optical Window (OW) is an interface
which seals the vacuum enclosure and, at the same time, lets the laser beam go
through for interferometric Metrology with the test masses. The OW is a
plane-parallel plate clamped in a Titanium flange, and is considerably
sensitive to thermal and stress fluctuations. It is critical for the required
precision measurements, hence its temperature will be carefully monitored in
flight. This paper reports on the results of a series of OW characterisation
laboratory runs, intended to study its response to selected thermal signals, as
well as their fit to numerical models, and the meaning of the latter. We find
that a single pole ARMA transfer function provides a consistent approximation
to the OW response to thermal excitations, and derive a relationship with the
physical processes taking place in the OW. We also show how system noise
reduction can be accomplished by means of that transfer function.Comment: 20 pages, 14 figures; accepted for publication in Class. Quantum Gra
3D mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle Cryo-EM
The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.The authors want to thank the Brigham and Womenâs Hospital Biomedical Research Institute (to MS), the Australian National Health and the Medical
Research Council (471418 to AD, MC and PB), and the European Commission (Marie Curie Action PIOF-GA-2009-237120 to AP-M)
- âŠ