10 research outputs found

    Heterozygous missense variant in GLI2 impairs human endocrine pancreas development

    No full text
    Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic β-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic β-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.</p

    Hdac4 Mutations Cause Diabetes And Induce Β‐Cell Foxo1 Nuclear Exclusion

    Get PDF
    Background Studying patients with rare Mendelian diabetes has uncovered molecular mechanisms regulating β‐cell pathophysiology. Previous studies have shown that Class IIa histone deacetylases (HDAC4, 5, 7, and 9) modulate mammalian pancreatic endocrine cell function and glucose homeostasis. Methods We performed exome sequencing in one adolescent nonautoimmune diabetic patient and detected one de novo predicted disease‐causing HDAC4 variant (p.His227Arg). We screened our pediatric diabetes cohort with unknown etiology using Sanger sequencing. In mouse pancreatic β‐cell lines (Min6 and SJ cells), we performed insulin secretion assay and quantitative RT‐PCR to measure the β‐cell function transfected with the detected HDAC4 variants and wild type. We carried out immunostaining and Western blot to investigate if the detected HDAC4 variants affect the cellular translocation and acetylation status of Forkhead box protein O1 (FoxO1) in the pancreatic β‐cells. Results We discovered three HDAC4 mutations (p.His227Arg, p.Asp234Asn, and p.Glu374Lys) in unrelated individuals who had nonautoimmune diabetes with various degrees of β‐cell loss. In mouse pancreatic β‐cell lines, we found that these three HDAC4 mutations decrease insulin secretion, down‐regulate β‐cell‐specific transcriptional factors, and cause nuclear exclusion of acetylated FoxO1. Conclusion Mutations in HDAC4 disrupt the deacetylation of FoxO1, subsequently decrease the β‐cell function including insulin secretion, resulting in diabetes.PubMedWoSScopu

    Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus

    No full text
    TREX1 acts in concert with the SET complex in granzyme A - mediated apoptosis, and mutations in TREX1 cause Aicardi-Goutieres syndrome and familial chilblain lupus. Here, we report monoallelic frameshift or missense mutations and one 3' UTR variant of TREX1 present in 9/ 417 individuals with systemic lupus erythematosus but absent in 1,712 controls (P= 4.1x10(-7)). We demonstrate that two mutant TREX1 alleles alter subcellular targeting. Our findings implicate TREX1 in the pathogenesis of SLE

    Pde3A Mutations Cause Autosomal Dominant Hypertension with Brachydactyly

    Get PDF
    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor(1). Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB)(2). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated(3,4). In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.Wo
    corecore