1,806 research outputs found

    Fixed Points and Attractors of Reactantless and Inhibitorless Reaction Systems

    Full text link
    Reaction systems are discrete dynamical systems that model biochemical processes in living cells using finite sets of reactants, inhibitors, and products. We investigate the computational complexity of a comprehensive set of problems related to the existence of fixed points and attractors in two constrained classes of reaction systems, in which either reactants or inhibitors are disallowed. These problems have biological relevance and have been extensively studied in the unconstrained case; however, they remain unexplored in the context of reactantless or inhibitorless systems. Interestingly, we demonstrate that although the absence of reactants or inhibitors simplifies the system's dynamics, it does not always lead to a reduction in the complexity of the considered problems.Comment: 29 page

    Optimal plant water use strategies explain soil moisture variability

    Get PDF
    Plant responses to water stress influence water and carbon cycles and can lead to feedbacks on climate yet characterizing these responses at ecosystem levels remains uncertain. Quantifying ecosystem-level water use strategies is complex due to challenges of upscaling plant traits and disentangling confounding environmental factors, ultimately limiting our ability to understand and anticipate global change in ecosystem dynamics and ecohydrological fluxes. We reduce the dimensionality of this problem and quantify plant water use strategies by combining plant traits with soil and climate variables into parameter groups that synthesize key eco-physiological tradeoffs. Using a parsimonious soil water balance framework, we explore variations in plant water uptake capacity, water stress responses, and water use performance via these non-dimensional parameter groups. The group characterizing the synchronization of plant water transport and atmospheric water demand emerges as the primary axis of variation in water use strategies and interacts with the group representing plant hydraulic risk tolerance, especially in arid conditions when plant water transport is limiting. Next, we show that specific plant water use strategies maximize plant water uptake (leading to carbon gain benefits) weighted by risks of water stress (leading to higher costs of water use). A model-data comparison demonstrates that these ecohydrologically optimal parameter groups capture observed soil moisture variability in 40 ecosystems and beyond aridity, rainfall frequency is an important environmental control for plant water use strategies. The emerging parsimonious link between ecohydrological performance and non-dimensional parameters provides a tractable representation of plant water use strategies, relevant to parameterize global models while accounting for ecological and evolutionary constraints on the water cycle

    Water Availability and Land Management Control Catchment‐Scale Agricultural Nitrogen and Phosphorous Use Efficiencies

    Get PDF
    In arable systems, large amounts of nutrients, particularly of nitrogen (N) and phosphorus (P), are not efficiently converted into harvestable products and are lost from agricultural systems, with negative consequences for agricultural productivity and the environment. These nutrient losses are mediated by hydroclimatic processes causing nutrient leaching and volatilization. We quantify over the period 1987–2012 how water availability through the evaporative ratio (actual evapotranspiration divided by precipitation) and irrigation, agricultural practices, and edaphic conditions jointly affect nutrient use efficiencies in 110 agricultural catchments in the United States. We consider N and P use efficiencies (nitrogen use efficiency [NUE] and phosphorous use efficiency [PUE]) defined as ratios of catchment-scale N and P in harvested products over their respective inputs, as well as the NUE/PUE ratio, as an indication of catchment-scale N and P imbalance. Both efficiencies increase through time because of changes in climate and agronomic practices. Setting all else at the median value of the data set, NUE and PUE increased with evaporative ratio by 0.5% and 0.2% when increasing the evaporative ratio by 20% and by 4.9% and 18.8% in the presence of irrigation. NUE was also higher in catchments where maize and soybean were dominant (increasing by 2.3% for a 20% increase in maize and soybean fractional area). Soil properties, represented by mineral soil texture and organic matter content, had only small effects on the efficiencies. Our results show that both climatic conditions and crop choice are important drivers of nutrient use efficiencies in agricultural catchments

    Recovering the Metabolic, Self-Thinning, and Constant Final Yield Rules in Mono-Specific Stands

    Get PDF
    Competition among plants of the same species often results in power-law relations between measures of crowding, such as plant density, and average size, such as individual biomass. Yoda's self-thinning rule, the constant final yield rule, and metabolic scaling, all link individual plant biomass to plant density and are widely applied in crop, forest, and ecosystem management. These dictate how plant biomass increases with decreasing plant density following a given power-law exponent and a constant of proportionality. While the exponent has been proposed to be universal and thus independent of species, age, environmental, and edaphic conditions, different theoretical mechanisms yield absolute values ranging from less than 1 to nearly 2. Here, eight hypothetical mechanisms linking the exponent to constraints imposed on plant competition are featured and contrasted. Using dimensional considerations applied to plants growing isometrically, the predicted exponent is -3/2 (Yoda's rule). Other theories based on metabolic arguments and network transport predict an exponent of -4/3. These rules, which describe stand dynamics over time, differ from the "rule of constant final yield" that predicts an exponent of -1 between the initial planting density and the final yield attained across stands. The latter can be recovered from statistical arguments applied at the time scale in which the site carrying capacity is approached. Numerical models of plant competition produce plant biomass-density scaling relations with an exponent between -0.9 and -1.8 depending on the mechanism and strength of plant-plant interaction. These different mechanisms are framed here as a generic dynamical system describing the scaled-up carbon economy of all plants in an ecosystem subject to differing constraints. The implications of these mechanisms for forest management under a changing climate are discussed and recent research on the effects of changing aridity and site "quality" on self-thinning are highlighted.Peer reviewe

    Role of high dose octreotide LAR for the treatment of GEP-NETs

    Get PDF
    Neuroendocrine Tumours (NETs) are a heterogeneous group of rare neoplasms that account for 0,5% of all malignancies. The increased incidence observed in the last few decades may be accounted for by increased awareness, improved diagnostic tools and a revision in the definition. The main primary sites are the gastro-entero-pancreatic (GEP) tract (62-67%), and the lung (22-27%). In patients with GEP-NETs, the strongest predictor of 5-years survival is the staging. An adequate clinical management of GEP-NETs should be multidisciplinary and should aim at assuring a good quality of life. Somatostatin (sst) analogues are widely used in these tumours, which often express sst receptors, since they are demonstrated to reduce clinical symptoms and tumour growth. Herein we explore the usefulness of doubling octreotide LAR dose in selected patients after escaping from symptoms control and/or tumour stabilization in course of treatment with standard dose

    Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration

    Get PDF
    Soil drying and wetting cycles promote carbon(C) release through large heterotrophic respiration pulses at rewetting, known as the “Birch” effect. Empirical evidence shows that drier conditions before rewetting and larger changes in soil moisture at rewetting cause larger respiration pulses. Because soil moisture varies in response to rainfall, these respiration pulses also depend on the random timing and intensity of precipitation. In addition to rewetting pulses, heterotrophic respiration continues during soil drying, eventually ceasing when soils are too dry to sustain microbial activity. The importance of respiration pulses in contributing to the overall soil heterotrophic respiration flux hasbeen demonstrated empirically, but no theoretical investigation has so far evaluated how the relative contribution ofthese pulses may change along climatic gradients or as precipitation regimes shift in a given location. To fill this gap,we start by assuming that heterotrophic respiration rates during soil drying and pulses at rewetting can be treated as random variables dependent on soil moisture fluctuations, and we develop a stochastic model for soil heterotrophic respi-ration rates that analytically links the statistical properties of respiration to those of precipitation. Model results show that both the mean rewetting pulse respiration and the mean respiration during drying increase with increasing mean pre-cipitation. However, the contribution of respiration pulses to the total heterotrophic respiration increases with decreasing precipitation frequency and to a lesser degree with decreas-ing precipitation depth, leading to an overall higher contribution of respiration pulses under future more intermittent and intense precipitation. Specifically, higher rainfall intermittency at constant total rainfall can increase the contribution of respiration pulses up to ∼10 % or 20 % of the total heterotrophic respiration in mineral and organic soils, respectively. Moreover, the variability of both components of soil heterotrophic respiration is also predicted to increase under these conditions. Therefore, with future more intermittent precipitation, respiration pulses and the associated nutrient release will intensify and become more variable, contributing more to soil biogeochemical cycling

    Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models

    Get PDF
    Elevated atmospheric CO2 concentration is expected to increase leaf CO(2)assimilation rates, thus promoting plant growth and increasing leaf area. It also decreases stomatal conductance, allowing water savings, which have been hypothesized to drive large-scale greening, in particular in arid and semiarid climates. However, the increase in leaf area could reduce the benefits of elevated CO2 concentration through soil water depletion. The net effect of elevated CO2 on leaf- and canopy-level gas exchange remains uncertain. To address this question, we compare the outcomes of a heuristic model based on the Partitioning of Equilibrium Transpiration and Assimilation (PETA) hypothesis and three model variants based on stomatal optimization theory. Predicted relative changes in leaf- and canopy-level gas exchange rates are used as a metric of plant responses to changes in atmospheric CO2 concentration. Both model approaches predict reductions in leaf-level transpiration rate due to decreased stomatal conductance under elevated CO2, but negligible (PETA) or no (optimization) changes in canopy-level transpiration due to the compensatory effect of increased leaf area. Leaf- and canopy-level CO2 assimilation is predicted to increase, with an amplification of the CO2 fertilization effect at the canopy level due to the enhanced leaf area. The expected increase in vapour pressure deficit (VPD) under warmer conditions is generally predicted to decrease the sensitivity of gas exchange to atmospheric CO2 concentration in both models. The consistent predictions by different models that canopylevel transpiration varies little under elevated CO2 due to combined stomatal conductance reduction and leaf area increase highlight the coordination of physiological and morphological characteristics in vegetation to maximize resource use (here water) under altered climatic conditions

    Resolução de Conflito de Competência tributária existente entre o ISS e ICMS na comercialização de softwares de prateleira e personalizados

    Get PDF
    O atual cenário do direito tributário brasileiro, no que concerne ao conflito de competência existente entre o ISS – Imposto Sobre Serviços e ICMS – Imposto Sobre Operações Relativas à Circulação de Mercadorias e Prestação de Serviços de Transporte Interestadual, Intermunicipal e de Comunicação, e suas respectivas incidências na comercialização de programas de computador (softwares), têm levado ao Supremo Tribunal Federal e Superior Tribunal de Justiça questões pertinentes sobre o conflito de competência tributária existente entre os entes federados; Estados e Municípios. Os programas de computador por possuírem classificação de bens intangíveis por natureza apresentam particularidades quanto à tributação incidente na realização de negócios jurídicos desta modalidade, aplicando ora ISS, ora ICMS. As Cortes Superiores, em seus julgados, tem firmado entendimentos relevantes sobre o tema, tecendo importantes considerações em busca da resolução de conflitos existentes em relação à matéria tributária incidente sobre os softwares. Em virtude disso, a pesquisa pretendeu levantar a problemática sobre a incidência do ISS ou ICMS na comercialização dos softwares distribuídos no varejo (softwares de prateleira), personalizados (produzidos sob encomenda) e via internet, através da transferência eletrônica de dados (download).
    corecore