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Competition among plants of the same species often results in power-law relations

between measures of crowding, such as plant density, and average size, such as

individual biomass. Yoda’s self-thinning rule, the constant final yield rule, and metabolic

scaling, all link individual plant biomass to plant density and are widely applied in

crop, forest, and ecosystem management. These dictate how plant biomass increases

with decreasing plant density following a given power-law exponent and a constant

of proportionality. While the exponent has been proposed to be universal and thus

independent of species, age, environmental, and edaphic conditions, different theoretical

mechanisms yield absolute values ranging from less than 1 to nearly 2. Here,

eight hypothetical mechanisms linking the exponent to constraints imposed on plant

competition are featured and contrasted. Using dimensional considerations applied

to plants growing isometrically, the predicted exponent is −3/2 (Yoda’s rule). Other

theories based on metabolic arguments and network transport predict an exponent

of −4/3. These rules, which describe stand dynamics over time, differ from the “rule

of constant final yield” that predicts an exponent of −1 between the initial planting

density and the final yield attained across stands. The latter can be recovered from

statistical arguments applied at the time scale in which the site carrying capacity is

approached. Numerical models of plant competition produce plant biomass-density

scaling relations with an exponent between−0.9 and−1.8 depending on themechanism

and strength of plant-plant interaction. These different mechanisms are framed here as

a generic dynamical system describing the scaled-up carbon economy of all plants in

an ecosystem subject to differing constraints. The implications of these mechanisms for

forest management under a changing climate are discussed and recent research on the

effects of changing aridity and site “quality” on self-thinning are highlighted.

Keywords: constant final yield, mono-specific stand, plant biomass, plant competition, plant density, power-law,

self-thinning
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1. INTRODUCTION

Power-law relations in ecology remain a subject of fascination
and research interest given their simultaneous ubiquity and
practical significance (Thompson, 1942; Vogel, 1988; Niklas,
1994; Brown and West, 2000; Farrior et al., 2016; West, 2017).
That a complex phenomenon such as competition among plants
may be succinctly summarized by a power-law expression
between measures of plant size (e.g., biomass) and crowding
(e.g., density) is arguably one of the most important examples
prominently featured in ecological textbooks and research
articles alike (Perry et al., 2008). In terrestrial ecology, two power-
law relations have emerged between biomass and density, both
developed for dense mono-specific stands (Shinozaki and Kira,
1956; Yoda, 1963): the self-thinning or Yoda’s rule and the
constant final yield rule. The usage of the term “rule” reflects
the extensive experimental evidence supporting the universal
character of the exponents of the size-density relations. The
significance of these power-law relations to crop production,
forestry and ecosystem management is rarely in dispute and
has been reviewed elsewhere (Willey and Heath, 1969; Drew
and Flewelling, 1977, 1979; White, 1981; Westoby, 1984; Peet
and Christensen, 1987; Friedman, 2016). However, the ecological
mechanisms responsible for their apparent universal character
remains a subject of inquiry and debate since their inception in
1864 (Spencer, 1864). This debate frames the scope of this review.

1.1. The Self-Thinning Rule
Self-thinning, depicted in Figure 1A, describes a natural process
in a single stand whereby the number of plants per unit area
(p) decreases as average plant (or mean individual) above-
ground weight (w) increases as time t progresses. That is,
the relation between w(t) and p(t) is associated with transient
dynamics initiated when p(t) begins to decline from its initial
value with increasing time due to overcrowding. Self-thinning
is, by definition, a process arising from space-filling where
vegetation has covered the whole area under consideration.
Self-thinning is presumed to be a process intrinsic to many
managed and unmanaged terrestrial plant communities, whose
composition and structure are influenced by competition for
resources available proportionally to space—whether above-
ground (e.g., photosynthetically active radiation) or below-
ground (e.g., water and nutrients) (Zhang et al., 2011; Hecht et al.,
2016). Therefore, w-p temporal trajectories of self-thinning have
considerable implications for forest management practices (Ge
et al., 2017; Zhang et al., 2019). It is to be noted, however, that p(t)
reductions due to ice storms, hurricanes, fires, diseases, or other
disturbances are not considered in the w − p relations described
by self-thinning.

As shown in Figure 1A, self-thinning does not describe the
entire temporal trajectory of w − p and only “kicks in” when the
w(t) is large enough for a given initial density to initiate intense
resource competition (i.e., space-filling). At the early stage of
stand establishment, w(t) may increase rapidly while the density
remains at its maximum p(t) = p0, where p0 = p(0) is the
initial (or planting) density, until the space-filling requirement
is reached.

Quantitative studies on a possible occurrence of universal
w − p scaling emerged from data in the early 1930s in
forestry (Reineke, 1933). Using measurements collected in
many overstocked forests in California (USA), presumed to be
experiencing self-thinning, p was empirically linked to the mean
diameter at breast height D using

log
(

p
)

= CR − 1.605 log (D) , (1)

where CR is a species specific constant. This equation states
that plant density decreases as size increases across forest
stands. Equation (1) is commonly referred to as Reineke’s
rule or Reineke’s stand density index in forestry. Contrary to
initial expectations by Reineke, the coefficient −1.605 appeared
invariant across many species (12 out of 14 studied), age
and environmental conditions. Thus, Reineke concluded that
determining density of stocking in even-aged stands using
Equation (1) has the advantages of freedom from correlation
with age and site quality, and thus offers simplicity and
general applicability.

Reineke’s rule can be recast as a power-law of the form
p = eCRD−1.605. It is evident that when linking w to D using
a power-law expression derived from allometry, Reineke’s rule
can also be formulated as a relation between plant biomass and
crowding instead of plant size and crowding. Yoda (1963) and
others later popularized similar power-law expressions extending
the range downward from mature forest stands to seedlings of
herbaceous plants,

w (t) = Cp (t)−α , (2)

where both w(t) and p(t) are time-dependent (Figure 2).
Equation 2 is hereafter referred to as Yoda’s self-thinning rule
when setting the exponent α = 3/2.

The generality of this expression and the limited variability
of the exponent α imply that annual and perennial crops,
herbaceous plants, and trees are expected to respond to crowding
in a surprisingly similar manner (White and Harper, 1970;
Gorham, 1979; Antonovics and Levin, 1980). Moreover, density
manipulation experiments seem to yield α = 3/2, yet C varies
(Dean and Long, 1985). An α ≈ 3/2 was reported even in
mixtures of Sinapis alba and Lepidium sativum, sown together
at high densities, after having undergone collective self-thinning
as described elsewhere (Bazzaz and Harper, 1976) (see Table S1).
Nevertheless, some variability in α has been found (typically
between 1 to 3/2), based on both theoretical arguments (reviewed
in section 2) and empirical evidence, motivating this review.

1.2. The Constant Final Yield Rule
Equation (2) relates trends of w(t) and p(t) with time t in a single
stand, but these two quantities can also be multiplied to calculate
the biomass per unit area y(t) = w(t)p(t). The constant final
yield rule applies when stands sown at different initial densities
p0 all achieve the same biomass per unit area or yield yc at a
fixed time after sowing (i.e., yc 6= f (p0); Figures 1B,C, 2). To
illustrate how this rule can be obtained, relations between initial
planting density and stand-level yield of the following form are
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FIGURE 1 | Conceptual representations of (A) self-thinning and (B,C) the constant final yield rule. (A) Self-thinning is initiated after crowding occurs, resulting in

decreasing plant density p(t) with time t. (B) A high initial planting density p0 is compensated for by poor growth conditions for each individual resulting in a small

individual biomass w at harvest after an initial growth time period (B-3). (C) Conversely, a small p0 allows for improved growth conditions leading to higher w at

harvest after the same growth time period (C-3). The choice of a woody species in column (A) and a herbaceous species in columns (B,C) is to highlight the wide

applicability of the self-thinning and constant final yield rules. Symbols: np refers to the number of plants in a plot, As is the plot ground area, D is the stem diameter, h

is the plant height, p = np/As is the plant density, w is the mean individual biomass, and the product wp is the total biomass per unit ground area at time t. Subscripts

refer to the different scenarios shown.

considered (Shinozaki and Kira, 1956; Holliday, 1960; Willey and
Heath, 1969; Watkinson, 1980)

1

y(p0|t)
=

Cf ,1(t)

p0
+ Cf ,2(t), (3)

where y is a function of p0 across stands at a fixed time t
after sowing. In Equation (3), Cf ,1 and Cf ,2 are species-specific
parameters that change with time (Kikuzawa, 1999). When
intense resource competition has had long enough time to

appreciably affect stand structure (t >> 0 where t = 0 is sowing
time), the constant final yield rule dictates that Cf ,1 p

−1
0 becomes

small compared to Cf ,2 and y(p0|t) = yc(t) = C−1
f ,2

(t) (Figure 1).

When density-driven mortality or self-thinning is absent (i.e.,
p(t) = p0), this rule leads to an exponent −1 between w(p0|t)
and p0, as it can be shown by multiplying both sides of Equation
(3) by p0, and recalling that y(t) = w(t)p(t). This gives a
relation between mean individual plant mass at steady-state and
initial density,
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FIGURE 2 | Linkages between dynamic equations for individual plant biomass (w) and density (p; Equation 5) for the self-thinning rule (w = Cp−α ; left panels) and the

constant final yield rule (yc = wp; right panels). (A,B) Illustration of the time evolution of w (green curves: mean biomass; green curves with shaded area: probability

densities of individual biomass in size-structured models). (C,D) Illustration of the time evolution of p. Combining the dynamic equations in subplots (A–C) and (B–D),

respectively, leads to a single equation describing trajectories in the w− p phase space (Equation 6): (E) when starting from a single initial density, different experiments

and arguments show that α could vary from 1 to 3/2, or (F) multiple stands starting from different sowing densities achieve the same biomass per unit area y at a fixed

point in time after sowing. Brackets right of the subplots: how constraints are imposed on the functions g1(.), g2(.), and g3(.) of Equations (5) and (6); constraint

numbering refers to the model categories discussed in the text (see also Figure 3). Gray circles and labels correspond to the scenarios depicted in Figure 1.

1

w(p0|t)
= Cf ,1(t)+ Cf ,2(t) p0,

(4)

or w(p0|t) = Cf ,2(t) p
−1
0 when Cf ,1 is negligible compared to

Cf ,2 p0 as noted earlier. Equation (4) describes how w varies
with p0 at a fixed time after sowing (comparing different stands)
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TABLE 1 | Summary of the studied mechanisms leading to a different exponent α (Equation 2) along with the most pertinent equations and assumptions used.

Mechanism α Assumptions

1. Dimensional and allometric 1 to 3/2 1, 2 or 3-D growth; closed canopy

2. Structural and biomechanical 4/3 Elastic buckling; closed canopy

3. Metabolic and translocation

network theories

4/3 or 3/2 2 or 3-D growth; volume-filling branching; imposed resource supply

4. Growth-hydraulic 4/3 Equal resource demand and supply; leaf area proportional to stem area

5. Spatial averaging 1 or α(CUE) Carrying capacity of total biomass; coupled equation for total biomass and plant number; intrinsic growth

rate∼NPP; mortality rate proportional to plant number

6. Dynamical systems 3/2, 4/3 or α(CUE) Coupled equations for plant carbon and plant number; biomass feedback on NPP; mortality rate proportional

to plant number

7. Size distribution 3/2 Equation for the evolution of plant size distribution; canopy closure under the perfect plasticity approximation;

different α depending on assumptions

8. Neighborhood interactions 1 to 3/2 Equation for individual plant biomass; size asymmetry in competition; crowding effects; mortality when

biomass balance < 0; different α depending on the mechanism and strength of competition

A complete list of symbols can be found in Table 2.

whereas Equation (2) describes temporal changes in w on the
same stand.

In contrast to Equation (4), Equation (3) also applies with the
presence of mortality. In other words, the constant final yield rule
and density-driven mortality, or self-thinning, are not mutually
exclusive. Constant final yield has received experimental support
in crops (Shinozaki and Kira, 1956; Holliday, 1960) and in a
number of tree species in forest stands (Pacala andWeiner, 1991;
Xue and Hagihara, 1998; Kikuzawa, 1999) (Table S1).

1.3. Interpreting Self-Thinning Exponents
A range of α values can be derived from contrasting theoretical
arguments suggesting that α = 3/2 (for the self-thinning rule)
and α = 1 (for constant, time-independent yield y 6= f (t))
are not universal values, but rather that α may be context-
dependent. On the one hand, if indeed different constraints lead
to specific exponents, it might be possible to infer which processes
shape forest development from observed α values. For example,
different types of plant-plant interactions lead to contrasting
exponents in individual-based models (as shown later in section
2.8). In turn, knowledge of the constraints at play would allow
predicting how α shifts in response to changing conditions (e.g.,
climate and land use). On the other hand, as shown in the
following, several arguments lead to similar α values, making it
difficult to establish which one is dominant (Table 1).

An obvious question to pursue is how the exponent α reflects
constraints or mechanisms controlling competition among
mono-specific plants. The multiple mechanisms covered in this
review are summarized in Table 1 and relations between them
are featured in Figure 3. That multiple mechanisms can result
in the same α is not new (Pickard, 1983). What is original
here is the establishment of a link between the constraint(s)
on competition, the transient dynamics leading to power-law
relations between w and p, and the numerical value of α.
Extensions proposed here are distinguished from published
arguments in subsections labeled “Extended Analysis” (some of
which are expanded in the Supplementary Material). This effort
is motivated both by the lack of a synthesis of the mathematical

FIGURE 3 | The various mechanisms leading to the power-law relation

w(t) = C[p(t)]−α reviewed here. The mechanisms are grouped based on how

growth and mortality are treated and whether time, age class, and resource

competition among individuals are explicitly considered. Note: in all temporally

dynamic mechanisms, mortality is explicit. However, an explicit account of

growth does not preclude an implicit account of mortality.

foundations of the self-thinning and constant final yield rules,
and by the need to quantify how the scaling exponents may vary
under future conditions, with implications for agricultural and
forest management.

2. THEORY

Additional definitions are now introduced: l is a characteristic
dimension of the plant, the one most sensitive to growth, V is
the whole plant volume (product of projected crown area and
height), ρ is the whole plant density, i.e., the individual plant
mass over the entire individual plant volume, and s is the mean
ground area covered by an individual plant or tree. From these
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definitions, w = ρV and crown radius is defined as r =
√
s. The

symbols and definitions are listed in Table 2.
Mechanistic studies, the subject of this review, typically begin

with the carbon balance of the individual plant, where the carbon
gains and costs as well as their constraints must be considered.
Mortality and its associated effects on stand density must also be
parameterized. Hence, these studies lead to a dynamical system
coupling the individual scale (e.g., the single plant weight) with
the plot or ecosystem scale (e.g., the density). This two-scale
system may be represented by the general expression

dw

dt
= g1(p,w);

dp

dt
= g2(p,w),

(5)

where g1(.) and g2(.) are functions that do not explicitly vary
in time (i.e., the system of equations is autonomous) and
must be determined from structural, hydraulic, energetic, and
physiological constraints on competition. In this two-equation
system, t can be eliminated to yield

dw

dp
=

g1(p,w)

g2(p,w)
= g3(p,w). (6)

Depending on the choices made for g1(.) and g2(.) [and thus for
g3(.)] or their constraints, a solution of the form w = Cp−α can

be recovered under certain conditions. The focus here is on the
connection between the exponent α and the constraints imposed

on g1(.), g2(.), or g3(.). The tactics explored to solve Equation

(6) for the various constraints include (Figure 3) (1) allometric
constraints and dimensional analysis (Shinozaki and Kira, 1956;

White and Harper, 1970; Miyanishi et al., 1979; Kikuzawa, 1999),
(2) structural constraints and other biomechanical arguments

(McMahon, 1973; Givnish, 1986), (3) energetic constraints,

metabolic arguments, and network transport theories (West

et al., 1997; Enquist et al., 1998), (4) hydraulic constraints
(Niklas and Spatz, 2004), (5) spatial averaging arguments at

extended lifespans (Roderick and Barnes, 2004), (6) dynamical
systems theory (von Bertalanffy, 1957) where g1(.) and g2(.)

are specified (Hozumi, 1977; Hara, 1984; Perry, 1984; Pahor,

1985; Dewar, 1993), and (7-8) models with local interactions
for resources among individuals of different sizes, or where p
is linked to the dynamics of w via neighborhood interactions
shaping the competition for resources (Aikman and Watkinson,
1980; Adler, 1996; Li et al., 2000; Chu et al., 2010; Coomes
et al., 2011; Deng et al., 2012; Lin et al., 2013). In short, these
approaches differ based on how growth andmortality are treated,
and whether time, size class, and resource competition among
individuals are explicit in the model. The essential elements of
these approaches are briefly reviewed and connections between
them highlighted.

2.1. Mechanism 1: Dimensional Analysis
and Allometric Constraints
The “Principle of Similitude” is a statement about the
dimensional consistency of any mathematical expression relating

TABLE 2 | List of symbols with definitions, equation where they are first used, and

dimensions.

Symbol Definition Equation Dimension

Common symbols

C Constant of the power-law between p and w 2 ML2α

CR Reineke’s rule species-specific constant 1 -

Cf ,1,Cf ,2 Coefficients for final yield relation 3 M−1, L2M−1

D Mean stand diameter at breast height 1 L

g1, g2, g3 Generic functions describing the dynamics

of w and p

5 MT−1

h Canopy height 15 L

l Plant characteristic dimension - varies

p Plant area density (number of plants per

ground area)

1 L−2

s Mean ground area covered by a plant - L2

r Crown radius (=
√
s) 15 L

V Whole plant volume - L3

w Mean plant weight 2 M

y Weight per unit area (= wp) 3 ML−2

yc Constant final yield - ML−2

α Scaling exponent of the p−w relation 2 -

ρ Whole plant density 8 ML−3

1. Dimensional and allometric arguments

Ad Integration constant 9 M

m Scaling exponent between projected

canopy area and l

14 -

n Scaling exponent between V and l 14 -

Eenv Environmental supply of resources (e.g.,

energy)

12 MT−3

Rp Metabolic rate per plant 12 ML2T−3

α′
1, α′

2 Dimensionless constants/exponents 8, 10 -

βa (βb) Power-law exponent between h (D) and r 16 -

λ1, λ2 Exponents for application of the Principle of

Similitude

7 -

2. Structural and biomechanical arguments

E Modulus of elasticity of wood 18 ML−1T−2

hcrit Height at self-buckling 18 L

ρW Wood density 18 ML−3

3. Metabolic arguments and translocation network theories

Di Dimension of space-filling network 21 -

ln Linear scale of space-filling network - varies

RE Metabolic rate per unit ground area 20 MT−3

Vf Moving fluid volume - L3

4. Growth-hydraulic arguments

g11, g22 Constants linked to k0, k1, k2, k3, and k4 - -

k0 Constant relating growth rate to wL 23 T−1

k1 Constant relating growth rate to total

biomass

23 M1/4T−1

k2 Constant relating wL to D 25 ML−2

k3 Constant relating wR to wS 26 -

k4 = ρW Constant relating wS to D and h 26 ML−3

wL, wS, wR Leaf, stem, root biomass 23, 24 M

5. Spatial averaging arguments

As Crop or stand area 29 L2

Cs Integration constant 34 M−1

(Continued)
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TABLE 2 | Continued

Symbol Definition Equation Dimension

CUE Plant carbon use efficiency 36 -

GPP Gross primary productivity - MT−1

Kc Carrying capacity (or final yield) per ground

area

30 ML−2

np Number of plants within As 32 -

NPP Net primary productivity 36 MT−1

RA Autotrophic respiration 36 MT−1

rc Intrinsic specific growth rate (∼ NPP/w) 31 T−1

wi (w) Weight of an individual plant (arithmetic

mean)

35 M

WT Total stand plant biomass 32 M

Y0 Parameter group 35 varies

αm Mortality inverse time constant (∼ RA/w) 32 T−1

6. Dynamical systems theory for plant carbon balance

aag Fraction of Pm allocated to above-ground

biomass

37 -

Bp Constant relating Pm to p 39 varies

Cf Constant relating LAP to w 39 varies

km Maintenance respiration rate 37 T−1

LAP Leaf area of a plant 37 L2

ma Exponent relating LAP to w 39 -

mb Exponent relating Pm to p 39 -

Pm (Pm,max ) Photosynthetic rate per leaf area (and

maximum)

37, 39 ML−2

7. Size distribution arguments

ac Canopy area per unit ground area over D2 43 L−2

D0 Diameter at breast height at t = 0 43 L

G Plant growth rate 42 LT−1

pD(D|t) Distribution of individual sizes 42 L−1

p0 Initial plant density 43 L−2

t∗ Canopy closure time 44 T

µ Plant mortality rate 42 T−1

8. Individual-based models for neighborhood interactions

ai Growth rate per unit area 47 MT−1L−2

bi ai (wmax )
−4/3(kg)

−2/3 47 M−1T−1

kg Constant relating the zone of influence s to w 48 ML−3

si Ground area covered by plant i 47 L2

wmax Maximum plant weight - M

φ1 Crowding exponent describing competition 49 -

φ2 Asymmetry exponent describing competition 49 -

Tp Integration period - T

αCD Power-law exponent of the

competition-density relation

50 -

In the far right column, L refers to generic units of length, M to mass and T to time. If an

equation number is not listed, the symbol is used in the text.

physical quantities to each other, such as mass, length, and time
as described in Equation (5) (Spencer, 1864). It states, simply,
that terms on both sides of an equation describing a physical
state need to have the same dimension. Although evident, its
consequences, first pointed out by Fourier (in 1822), allow for
significant results to be derived (Lemons, 2018). The “Principle

of Similitude” is now invoked in the context of w-p power-
law relations.

2.1.1. Extended Analysis: Applying the Principle of

Similitude
The dimensions needed to describe dw/dp are mass ([M]) and
length ([L]), where [M] and [L] signify units of mass and length.
An expression for g3(.) is sought by inspecting a list of variables it
might depend on such as w, p, ρ, s, r, and then combining these
variables in groups that preserve the dimensions of dw/dp. The
analysis is focused only on the period where self-thinning occurs,
i.e., p(t) < p0, not the entire trajectory linking w to p at all times.
Self-thinning only commences when the length scales associated
with plant position in a stand (but not necessarily plant height)
are related to p. This means that p must be retained to carry [L]
into the equation for g3(.). If g3(.) is assumed to be independent
of w, then the only mass unit available in this list of variables is ρ.
Dimensional considerations ofw and p alone (having dimensions
of mass [M] and the inverse of surface area [L]−2, respectively)
result in

dw

dp
=

[M]

[L]−2
∝ pλ1ρλ2 ∝

(

1

[L]2

)λ1
(

[M]

[L]3

)λ2

. (7)

Matching the units on the most left-hand side to the most right-
hand side requires λ2 = 1, and 2λ1 + 3λ2 = −2, or λ1 = −5/2.
Hence, g3(ρ, p) ∝ ρ p−5/2 (a power-law as expected from such
dimensional analysis). Replacing the proportionality symbol with
a dimensionless constant α′

1 results in

dw

dp
= α′

1 ρ p−5/2. (8)

Provided ρ is not impacted by p, although it can vary in time, the
ordinary differential Equation (8) can be solved to yield

w = Ad − (2/3) α′
1 p

−3/2, (9)

where Ad is an integration constant that must be determined
from other considerations. This argument apparently recovers
Yoda’s rule without any explicit considerations to p declining with
increasing t as necessary for self-thinning. However, assuming
that the length scales are all related to p implicitly means that
crowding has occurred.

Likewise, if w replaces ρ, then dimensional considerations
alone result in

dw

dp
= α′

2

w

p
, (10)

where α′
2 is a dimensionless constant. Solving this equation

leads to w = Adp
α′
2 , which again is a power-law. In this case,

dimensional analysis fails to determine the numerical value of
the exponent α′

2, but it still predicts a power-law relation between
w and p. Clearly, the choice of variables impacting g3(.) or the
constraints imposed on it affects the value of the exponent α. For
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example, if the constraint is a constant total mass in time (i.e.,
dy/dt = 0), then it directly follows that

d(wp)

dt
= w

dp

dt
+ p

dw

dt
= 0 ⇒

dw

dp
= −1

w

p
. (11)

That is, the constant total mass in time acts as a new constraint,
allowing the determination of α′

2 = −1 and the achievement of a
constant yield yc.

The main constraint on the outcome of competition may be
a constant energy (or limiting resource) per unit area supplied
by the environment Renv. When this constant (in time) supply
satisfies the ecosystem metabolic demands per unit area, Renv =
p Rp, where Rp is basal metabolic rate per individual plant, then

dRenv

dt
= 0 =

d(p Rp)

dt
⇒

dp

p
= −1

dRp

Rp
. (12)

This system yields p ∼ R−1
p . In metabolic theory, Rp is uniquely

determined byw and the temperature of the environment (Brown
et al., 2004). Employing Kleiber’s law (Kleiber, 1932)

Rp ∼ w3/4 (13)

and inserting this result into p ∼ R−1
p , directly recovers the

exponent α = 4/3 (i.e., the metabolic argument).

2.1.2. Allometry and Growth Habits as Constraints
Self-thinning is initiated when packing is achieved: the ground
area is entirely covered by the plants or trees as discussed
elsewhere (Miyanishi et al., 1979). It is emphasized that the
probability that some local densities will achieve packing before
the majority does is neglected, because p is a property that
pertains to the whole ground area. If plant growth is three-
dimensional (i.e., height and crown diameter are increasing
proportionally with increasing individual biomass) and ρ is
constant, thenV ∼ l3,w ∼ ρl3, s ∼ l2. Self-thinning occurs when
s ∼ p−1. When this point is reached, l ∼ s1/2 ∼ p−1/2. Thus, all
length scales are now linked to p as foreshadowed earlier. Yoda’s
rule is directly recovered by noting thatw ∼ ρl3 ∼ ρp−3/2, which
is the key result in Equation (9). This argument assumes that the
increment of plant size is isometric and proportional in all three
dimensions (Miyanishi et al., 1979). Linking w to l, and all length
scales to p, is akin to setting g3(.) of Equation (6) to uniquely
depend on the density (p) over the course of self-thinning.

Other growth habits may now be analyzed, and two limiting
cases are illustrated: prostrate ground cover plants (i.e., 2-D
growth) to etiolated seedlings (i.e., 1-D growth). To place these
growth habits in a framework that employs allometric scaling, it
is assumed that V ∼ lm and s ∼ ln. Hence, w ∼ ρlm and at the
incipient point of self-thinning, the condition s ∼ p−1 must be
maintained. These assumptions lead to

w = Cp−m/n, (14)

where m = 3 (i.e., 3-D growth) and n = 2 recovers Yoda’s
rule, and C is a proportionality constant. For prostrate ground

cover plants, m = 2 and n = 2 resulting in w ∼ p−1. For
etiolated seedlings, the cross-sectional area is assumed constant
and growth only occurs in the vertical (a race to harvest light).
Hence, m = 1 and, with mean ground area covered by a plant
being constant, requires s to be constant and thus n = 0. Hence,
w ∼ p−1/0 yields infinite exponent, or stated differently, no
self-thinning is to be expected (Miyanishi et al., 1979).

2.1.3. Extended Analysis: Reineke’s vs. Yoda’s Rules
Having covered the growth habits, it is now instructive to
distinguish between a vertical dimension (canopy height h) and
a horizontal dimension (canopy radius r), which allow recasting
Equation (14) as

log(p) =
n

m
log(C)−

n

m
log

[

ρ(r2h)
]

, (15)

where w = ρ(r2h). When Equation (15) is combined with an
allometric expression linking h to r of the form h ∼ rβa , and
when relating r to stem diameter D of the form r ∼ Dβb (Enquist
et al., 2009), the outcome is

log(p) =
n

m
log

(

C

ρ

)

− βb(2+ βa)
n

m
log(D). (16)

Comparing Equation (16) with Reineke’s Equation (1) suggests
that the exponents of the height-to-canopy radius (βa) and
canopy radius-to-stem diameter (βb) allometries must be
constrained by

1.605
m

n
= βb (2+ βa) . (17)

For m = 3 and n = 2 (i.e., Yoda’s rule), βb(2 + βa) ≈ 2.4.
The immediate consequence of this combination is that V ∼
(r2h) ∼ D2.4. Conversion of D to a characteristic scale l ∼ r,

results in V ∼ l
2.4
βb and not V ∼ l3. Notably, scaling relations

discussed elsewhere (Enquist et al., 2009) provide βa = 1.14
and βb = 0.684 so that βb (2+ βa) ≈ 2.2, lower than the 2.4
value obtained above. Therefore, only for particular choices of the
coefficient in Reineke’s Equation (1) and of the scaling exponents
βa and βb, can the relation V ∼ l3 be recovered. In fact, this
corroborates the point made by the incisive analysis of Weller
(1987) that Yoda’s exponent α = 3

2 may be the exception rather
than the rule.

As the stand becomes crowded, more individuals are
suppressed. Acclimation allows suppressed individuals to survive
longer by decreasing the carbon investment in diameter relative
to height and maintaining smaller crowns closer to the top of
the canopy. These adjustments decrease βb of the entire stand.
A reduction in βb is expected to reduce the slope of the p − w
scaling (e.g., m/n in Equation 17). The reduction in crown size
of suppressed individuals reduces the wind-induced drag force,
allowing these trees to maintain structural integrity despite the
lower taper.

2.2. Mechanism 2: Structural and
Biomechanical Constraints
Relations between height and diameter can be derived to further
constrain allometric scaling based on self-buckling or structural
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considerations. The key observation regarding self-buckling for
trees is that the critical height for buckling (hcrit) plotted against
tree base diameter (D) follows a power-law of the form hcrit ∼
D2/3 for nearly every American tree species (McMahon, 1973)
(Table S1). This h − D scaling was consistent with the incipient
point of buckling of tall columns (due to their own weight) given
by the elastic buckling criterion (or Euler-Greenhill formula)

hcrit ∝
E

ρW
D2/3, (18)

where E is the modulus of elasticity, ρW is the density of wood.
If Equation (18) describes an allometric scaling law, then for 3-D
growth, l ∼ D,V ∼ D2hcrit ∼ D8/3, and s ∼ D2. Employing once
more the allometric scaling framework presented previously,w ∼
(ρ)lm=8/3, and s ∼ ln=2. Inserting these estimates of m and n in
Equation (14) result in (McMahon, 1973)

w ∼ p−4/3. (19)

This scaling is intermediate between a steady state biomass per
individual (α = 1) and Yoda’s rule (α = 3/2). Connections
between the aforementioned scaling law in Equation (19) and
metabolic arguments (i.e., Kleiber’s law) have already been noted
(McMahon, 1973). However, the scaling law in Equation (19)
can also be derived without resorting to self-buckling, using a
variant of the growth-hydraulic constraint (Niklas and Spatz,
2004), as well as metabolic constraints, as described later on.
Additional implications of self-buckling are explored in the
Supplementary Material.

2.3. Mechanism 3: Metabolic Limitations
Metabolic arguments and their connection to the exponent α

have been popularized by the work of West, Enquist, and Brown
(West et al., 1997; Enquist et al., 1998; Brown et al., 2004). To
sustain a total biomass per unit ground area wp requires a rate of
energy (or other limiting resource) supply from the environment
per unit area of at least RE = pRp, where Rp is the metabolic rate
per plant (energy or resource use per time per plant). In living
organisms, the basal metabolic rate Rp varies with size and is
given by Kleiber’s law (Equation 13) (Kleiber, 1932; Banavar et al.,
1999). Hence, RE = pRp ∼ pw3/4.

2.3.1. A Steady State Resource Balance
The case of a limiting essential resource is first considered.
When the external environmental supply of this resource (=
Eenv) is balanced, or fully exploited, by the stand (or ecosystem)
metabolic demand RE, then

Eenv = RE ∼ pw3/4, (20)

resulting in w ∼ p−4/3 when Eenv is set to a constant (e.g., a given
annual shortwave radiation or precipitation rate). For all practical
purposes, Equation (20) is an equilibrium argument (constant
resource supply) with a constraint shaping g1(.) in Equation
(5) at a given supply Eenv. It is also interesting to note that
Equation (20) suggests a link between the constant C in Equation

(2) and environmental conditions, as C ∼ E
4/3
env . The debate

on the difference between the 4/3 and the 3/2 exponents are
highlighted as they offer a new perspective on links between the
scaling exponent α and the constraints. The α = 4/3 exponent
has experimental support when average “mature” plant weight is
plotted against p0 for different species spanning nine orders of
magnitude by weight (Enquist et al., 1998) and appears consistent
with a number of spatially explicit simulation studies discussed
elsewhere (Deng et al., 2012) (Table S1). Such an inter-species
comparison, however, fundamentally differs from plotting w(t)
against p(t) for a single stand across time (Yoda, 1963).

2.3.2. Extended Analysis: Constraints on the

Trans-location Network Distribution
It has been argued that distributed trans-location networks
evolved from a need for effective connectivity with increased
size (i.e., analogous to the economy of scale in microeconomics).
Distributed trans-location networks occur in biological systems
(including respiratory networks) and in inanimate systems alike
(e.g., river networks). The flow rate in an arbitrary trans-
location network can be derived as a function of the local
connectivity as discussed elsewhere (Banavar et al., 1999). For the
problem at hand, this trans-location network may represent the
phloem, where metabolic products derived from photosynthesis
(mainly carbohydrates) are being translocated from leaves, or the
xylem, where water is transported to the leaves. In this network
derivation, a moving fluid volume filling the network is assumed
to be Vf . The Vf scales with the product of the number of links in
the network and the distance between nodes. In aDi-dimensional
space-filling network (i.e., a network that can deliver fluid to all

the domain), the number of links is proportional to l
Di
n , where

ln is a linear scale of the network. The distance among links is

also proportional to ln. Hence, Vf ∼ l
Di
n × ln = l

Di+1
n , or ln ∼

V
1/(Di+1)
f

. For a constant fluid density, w ∼ Vf and Rp ∼ l
Di
n .

It directly follows that the metabolic rate for an individual is
given by

Rp ∼ wDi/(1+Di). (21)

For RE = pRp = Eenv = constant, it follows that Rp ∼ p−1 as
before. As a result, Equation (21) is used to obtain

w ∼ p−(1+1/Di). (22)

ForDi = 3, the 3/4 metabolic scaling exponent is recovered from
Equation (21), and α = 4/3 is now recovered from Equation
(22) in a manner that is compatible with Kleiber’s law without
resorting to critical height and self-buckling. Interestingly, the
analysis here also suggests that Yoda’s 3/2 scaling exponent is
recovered for Di = 2 (i.e., Rp ∼ w2/3). A 2-D translocation
network may be incompatible with Yoda’s original assumption of
proportional growth in all three dimensions. This incompatibility
is one of the salient features of the aforementioned controversy
surrounding the 4/3 vs. the 3/2 self-thinning scaling exponent.

2.4. Mechanism 4: Hydraulic Constraints
on Growth
In addition to structural and energy supply constraints discussed
as mechanisms 2 and 3, a hydraulic constraint can be formulated
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by imposing a steady-state transpiration rate from the roots
to the leaves. This constraint may be viewed as a “network-
on-network” supply constraint. There are three networks that
must be coordinated: a root network that must harvest water
and nutrients from the soil, a xylem network that must deliver
water to leaves, and distributed end-nodes for water loss through
leaves. It is assumed that these three networks are sufficiently
coordinated so that no severe “bottleneck” in one network
routinely impairs the function of the other two networks
(Thompson and Katul, 2012; Huang et al., 2018). Based on
this view, a simplified version of a growth-hydraulic constraint
(Niklas and Spatz, 2004) is now reviewed. In this mechanism, it is
assumed that the annual increment of dry matter per plant scales
(i) linearly with standing leaf biomass wL that provides metabolic
products and (ii) with w3/4 as in Kleiber’s law. Hence, equating
these two assumptions results in

k0wL = k1w
3/4, (23)

where k0 and k1 denote allometric constants. With w defined by
the sum of leaf, stem, and root mass (i.e., w = wL + wS + wR)
results in

k0wL = k1 (wL + wS + wR)
3/4 . (24)

The hydraulic component of this argument is framed as follows
(Niklas and Spatz, 2004): the amount of water absorbed by
roots per unit time must pass through stems, experience a phase
transition and then exit through the stomata distributed on
leaf surfaces. Because this amount of water loss is conserved
throughout the plant (i.e., no storage or capacitive effects on
time scales commensurate with stand development), wL must
scale with the hydraulically functional cross-sectional area of
stems and roots (sapwood area). The key assumption is that the
sapwood area is proportional to the square of the stem diameter
(i.e.,D2). The assumption need not imply that the diameter of the
water transporting vessels is proportional toD, but thatD reflects
the total number of vessels of fixed diameter. Viewed from this
perspective, this assumption may also be interpreted as another
expression of the so-called da Vinci rule, or the pipe flow model
of Shinozaki (Shinozaki et al., 1964; Horn, 2000), and leads to
wL = k2D

2. Substituting wL in Equation 24 and rearranging the
terms lead to

(

k0

k1
k2D

2

)4/3

− k2D
2 = wS + wR. (25)

Two additional assumptions are required (Niklas and Spatz,
2004): an allometric relation between root and stem biomass
(wR = k3wS) and a relation between stem biomass and stem
volume (i.e., wS = k4(D

2h)), where k4 = ρW , but the notation
of Niklas and Spatz (2004) is maintained in the following. Hence,
Equation (25) can be formulated as

(

k0

k1
k2D

2

)4/3

− k2D
2 =

(

1+ k3
)

k4(D
2h), (26)

from which it follows that h ∝ D2/3 and wS ∝ D8/3. Upon
comparison with the Euler-Greenhill formula (Equation 18), the

same h ∝ D2/3 scaling has been recovered from metabolic and
hydraulic constraints acting in concert (i.e., in coordination), not
frommechanical limits on tree height, nor from energy supply by
the environment. Combining these outcomes with w ∝ (D2h) =
D8/3, s ∼ D2, and s ∼ p−1 (orD ∝ p−1/2) at the point where self-
thinning commences, recovers the metabolic formulation w ∼
p−4/3. Here, geometric packing (i.e., s ∼ p−1) leading to self-
thinning is necessary to arrive at α = 4/3, which was not the case
in the metabolic arguments.

2.4.1. Extended Analysis: An Alternative Hydraulic

Link to Stem Diameter
The aforementioned arguments may be generalized to include
other linkages between sapwood area and stem diameter. One
such linkage is the so-called Hess-Murray law that predicts the
optimal blood vessel tapering in cardiovascular systems. This
linkage leads to wL ∝ D3 (Murray, 1926; McCulloh et al.,
2003) instead of D2. Starting again from Equation (24), the
aforementioned argument leads to

(

k0
k1
k2D

2
)4/3

− k2D
3

D2
(

1+ k3
)

k4
= h, (27)

or h ∼ D2/3 for small D only, not for any D as it was the case for
the DaVinci rule. For intermediate or largeD, h ∼ g11D

2/3−g22D
(g11 and g22 are constants linked to k0, k1, k2, k3, k4), which does
not exhibit a unique exponent provided D < (g11/g22)

3. The
connection between the da Vinci rule (along with the pipe flow
model) and water transport has been the subject of debate outside
the scope of the present work (Bohrer et al., 2005), with some
arguing that the da Vinci rule is compatible with structural, rather
than water transport theories (Eloy, 2011).

2.5. Mechanism 5: Spatial Averaging
Arguments
This approach explicitly considers that stands generally comprise
individuals of different sizes, even in even-aged mono-cultures,
owing to small genetic variability as well as variations in site
micro-environmental factors, impacting growth potential and
access to resources. It is thus necessary to consider the effect of
spatial averaging over individuals within the crop or stand area
As. By definition, p = np/As where np is the number of individual
plants within area As. Also, the arithmetic mean weight of all
individuals within As is defined as

w =
1

np

i=np
∑

i=1

wi, (28)

wherewi is the weight of each individual plant. Equation (28) can
be rearranged to yield (Roderick and Barnes, 2004)

w =
(

As

np

)

1

As

i=np
∑

i=1

wi =
(

p−1
) 1

As

i=np
∑

i=1

wi. (29)

It was suggested that over an extended life span, the total
stand biomass dynamics eventually reaches a steady-state such
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as in the experiments of Shinozaki and Kira (1956) on soybean,
a herbaceous species, where mortality was absent (Table S1).
If such steady-state conditions are attained within a single
stand, then

1

As

i=np
∑

i=1

wi = Kc, (30)

where Kc is a constant carrying capacity determined by the
available resources supporting maximum biomass per unit area.
Equation (30) implies that α = 1 because w = Kcp

−1 as long
as Kc is constant. The derivation of Equation (30) makes no
assumption about p0, p(t) or w(t), or that y(t) follows logistic
growth as in the competition-density effect (Shinozaki and Kira,
1956; Xue and Hagihara, 1998). Equation (30) was also shown to
apply for a pine stand (Xue and Hagihara, 1998).

For prostrate ground cover plant growth, the emergent scaling
law was already shown to be w(t) ∼ p(t)−1 using an entirely
different set of assumptions. Evidently, the α = 1 scaling
exponent can be recovered from multiple mechanisms. It is
demonstrated next that (i)w(t) ∼ p(t)−1 may still reflect a correct
minimum exponent under weak self-thinning style competition
and (ii) novel links can be established between the newly derived
exponent here and other “conservative” ratios describing stand
carbon dynamics.

2.5.1. Extended Analysis: Recovering the α = −1
Exponent From a Dynamical System
The previous argument can be extended by relaxing the
assumption of steady state, showing that the same result is
obtained in a more general case. As a point of departure from
prior work (Roderick and Barnes, 2004), the α = 1 exponent is
now analyzed using the framework of Equation (5). To facilitate
this analysis, the total stand weightWT = npw is assumed to vary
logistically in time using (Verhulst, 1838)

dWT

dt
= rcWT

(

1−
WT

AsKc

)

, (31)

where rc is the intrinsic growth rate. This assumption has been
used in the original work of Shinozaki and Kira (1956) at the
individual level and generalized by others at the stand level
(e.g., Xue and Hagihara, 1998). Such assumption is equivalent to
prescribing g1(.) and g2(.) of Equation (5). Instead of analyzing
the dynamics at an equilibrium point WT/As = Kc being
constant, it is instructive to explore the transient dynamics
where np = pAs begins to decline in time. This type of
competition is intended to resemble some but not all aspects
of self-thinning (i.e., being a transient and operating when
dnp/dt < 0) while maintaining a density-dependent logistic form
for total biomass (instead of constant Kc) used by Shinozaki and
Kira (1956). In particular, we ask under what conditions such
a “stylized competition” remains compatible with scaling laws
associated with a steady state yield or the self-thinning rule (or
intermediates). A minimal model describing the np decline is

dnp

dt
= As

dp

dt
= Asg2(p) = −αmnp, (32)

where αm is a mortality inverse time constant. Equation
(32) specifies the reduction in the number of plants through
mortality as proportional to the number of plants np thus
making np an exponential function of time. Again, viewed
from the perspective of Equations (5), these approximations are
equivalent to specifying g2(p) and g1(w, p) via Equation (31) when
recalling that WT = npw. By eliminating time t in Equations
(31) and (32) (as before, to obtain Equation 6), an ordinary
differential equation describing the variations of w with np can
be explicitly derived,

dw

dnp
+

w

np

[

1+
rc

αm

(

1−
npw

KcAs

)]

= 0. (33)

The general solution of Equation (33) is given by

w(t) =
As

np(t)
Kc

[

1

1+ CsKcAsnp(t)(rc/αm)

]

, (34)

where Cs is an integration constant. Noting again that p−1 =
As/np, Equation (34) can be expressed as

w(t) = Kcp(t)
−1

[

1

1+ Y0p(t)(rc/αm)

]

, (35)

where Y0 = CsKcA
(rc/αm+1)
s . Equation (35) recovers w(t) =

Kcp(t)
−1 when Y0p

(rc/αm) << 1. When Y0p
(rc/αm) >> 1,

Equation (35) predicts a w ∼ p−[1+(rc/αm)]. For Y0p
(rc/αm) of the

order of unity, no unique scaling exponent exists, although any
power-law approximation to this solution must yield exponents
exceeding unity in magnitude, which is the sought result. This
finding offers an explanation as to why the exponent α varies
between 1 and 2 across many data sets a priori conditioned on
dnp/dt < 0 (i.e., when mortality begins to play a role).

2.5.2. Extended Analysis: the Effects of Invariant

Carbon-Use Efficiency on Self-Thinning
The quantity rc/αm reflects the ratio of two time scales: one
associated with net carbon gain of an individual plant (1/rc) and
another associated with its mortality (1/αm). The time scale for
carbon gain may be associated with the net primary productivity
(NPP) of an individual plant, so that rc ∼ NPP/w (Thurner et al.,
2016). In self-thinning stands where carbon loss in respiration
is not compensated by photosynthesis in highly suppressed
individuals (under light competition), it may be (simplistically)
assumed that carbon starvation is the causal mechanism of
mortality. Thus, the mortality time scale is associated with
autotrophic respiration RA, so that αm ∼ RA/w and

rc

αm
=

NPP

RA
=

CUE

1− CUE
, (36)

where NPP=CUE×GPP, GPP is the gross primary productivity,
RA=GPP-NPP=(1-CUE) GPP, and CUE is the plant carbon use
efficiency (0 < CUE < 1). Therefore, this link between rc/αm

and CUE offers a new perspective about α and carbon use
efficiency; i.e., α = 1 + (rc/αm) = (1 − CUE)−1. This estimate
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of α is expected to be an upper limit, because αm is likely to be
underestimated when mortality time scale is estimated from RA.

The value of plant CUE typically ranges between 0.4 and
0.8 depending on species, plant age, and growing conditions,
with values even lower than 0.4 in mature trees and generally
higher values in rapidly growing crop species (Manzoni et al.,
2018). For an intermediate CUE=0.47 (typical in forests; Waring
et al., 1998), large scaling exponents are obtained, w ∼ p−1.88

as already foreshadowed. For relatively inefficient plants with
CUE=1/3, w ∼ p−3/2, recovering Yoda’s rule. The metabolic
argument w ∼ p−4/3 can only be recovered for CUE=1/4.
This argument is prone to large uncertainties due to both the
qualitative link between parameters rc and αm, and CUE, and
the uncertainties in CUE estimates. Nevertheless, plants that are
more effective in converting resources to biomass are expected to
exhibit steeperw−p scaling relations, a conjecture to be explored
in future studies.

Up to this point, it was assumed that at the individual plant
scale, the entire biomass captured in w is alive and contributes
to respiration. However, for a preset total biomass, lower initial
density may lead to greater live crown ratio at the incipient
point of self-thinning. Hanging onto large branches at the
bottom of long crowns contributes little to annual photosynthesis
(Oren et al., 1986), but requires investment in maintaining
active sapwood, cambium, and phloem. Thus, the initial planting
density can play a role in determining the fraction of live to
total biomass at the start of self-thinning. At that point, despite
similarities in stand density, mean total individual tree biomass
(Peet and Christensen, 1987), and leaf area (Dean and Long,
1985), stands characterized by individuals with a higher fraction
of live to total biomass may exhibit higher whole-tree respiration
rates per unit of leaf area and, therefore, reduced CUE and α.

2.6. Mechanism 6: Dynamical Systems
Theories for Plant Carbon Balance
A number of approaches have been proposed that recover the
self-thinning rule from a mechanistic representation of the plant
carbon balance (Hozumi, 1977; Pickard, 1983; Hara, 1984; Perry,
1984; Pahor, 1985; Voit, 1988). Common to all these approaches
is the so-called von Bertalanffy equation (von Bertalanffy, 1957;
Perry, 1984) or a variant of it that applies to individual plants as
discussed in Figure 3. Using the framework of Equation (5), this
equation represents g1(w, p) as

dw

dt
= g1(w, p) = aagPm(p)LAP(w)− kmw, (37)

where aag is the fraction of photosynthesis allocated to biomass,
LAP is the leaf area of an individual plant, assumed to vary with
w, Pm is the photosynthetic rate per unit leaf area, varying with p
(e.g.,due to light competition), and km is the rate of maintenance
respiration (whereas mortality is described by Equation 32).
The overarching assumption of von Bertalanffy equation is that
resource acquisition must traverse a limiting surface area (here
LAP; scales as ∼ l2) whereas respiratory and maintenance costs
vary with plant size (or mass, w; scales as ∼ l3). Variants to
Equation (37) include complex expressions for photosynthetic

gains, respiratory losses, connections between Pm and p (such
connections are the subject of spatially explicit models discussed
later), and the partitioning of w into metabolically active and
inactive parts.

The goal of this section is not to review all of them but to
offer links between the von Bertalanffy equation and the general
framework set in Equation (5). Equation (37) is coupled to
Equation (32) after eliminating time t and substituting np = Asp
to yield

dw

dp
−

km

αm

w

p
= −

1

p

aagPmLAP

αm
. (38)

Mechanistic models link LAP to w using allometric rules
and Pm to p assuming that increases in p reduces the main
resource driving photosynthesis such as photosynthetically active
radiation (Perry, 1984). For example, LAP and Pm may be
expressed as

LAP = Cfw
ma;

Pm

Pm,max
= 1− exp

[

−Bpp
mb
]

.
(39)

Here,ma ≈ 0.81 and Cf ≈ 0.011 when LAP is treated as all sided

(in m2) and w is expressed in grams (determined for a wide range
of species), whereas Bp = 4.61 and mb was varied as a control
parameter (plausible values for most species in Perry, 1984).
The representation in Equation (39) preserves the autonomous
nature of Equation (38) thereby linking the phase-space of the
p − w trajectories directly to model parameters. It also provides
a complete description of g3(w, p) in Equation (6). However,
a unique power-law solution of the form w = Cp−α is not
apparent even thoughmodel calculations suggest an approximate
power-law with exponent α = 1.0 − 1.8 for plausible parameter
combinations. We now seek to clarify the connection between
the von Bertalanffy equation and the exponent α for certain
approximations revising the mathematical form of g3(.).

2.6.1. Extended Analysis: Power-Laws From the von

Bertalanffy Equation
To extract power-law features from the von Bertalanffy equation
and place them in the framework of Equation (5), it is assumed
again that individual GPP= aagPmLAP = RA/(1 − CUE) and
RA ≈ kmw, resulting in an estimate of aagPmLAP = kmw/(1 −
CUE). Hence, Equation (38) reduces to

dw

dp
−

w

p

km

αm

CUE

CUE− 1
= 0. (40)

The solution to Equation (40) is now a power-law of the form

w ∼ p
− km

αm
CUE

1–CUE . (41)

Yoda’s rule is recovered when (km/αm) = (3/2)(CUE−1 − 1)
whereas the metabolic exponent is recovered when km/αm =
(4/3)(CUE−1 − 1). Because CUE ≈ 0.5 (Waring et al., 1998;
Manzoni et al., 2018), this analysis leads to a unique relation
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between respiratory and mortality time scales, and the exponent
α given by km/αm ≈ 3/2, 4/3, or 1. That is, the exponent α may
be related to the ratio of the two aforementioned time scales.

2.6.2. Phase Space Trajectories Constraints on α

Dynamical systems theory has been used to explore self-
thinning empirically by modeling the w − p time-course
in crowded plant populations (Hara, 1984). The dynamical
system can be expressed in terms of relative quantities, namely

(relative) mortality rate (i.e., p−1 dp
dt
) and relative growth rate

(i.e., w−1 dw
dt
). Among the choices of the functions linking

p and w to relative mortality and growth rate, generalized
Gompertz functions are empirically well-supported (Hara, 1984;
Tsoularis and Wallace, 2002). With such choices, the dynamical
systems theory can establish explicit dependencies of the
empirical coefficients and the exponent α and plausibility
constraints. Such a plausibility constraint is the imposition that
equilibrium points are stable fixed points (as expected in self-
thinning). A key result is that several combinations of the
empirical parameters of the Gompertz function lead to exponents
commensurate with the “rule of constant yield” or Yoda’s
thinning rule, while other exponents are possible with other
empirical parameter combinations. The details are illustrated in
the Supplementary Material.

2.7. Mechanism 7: Size Distribution
Arguments
The self-thinning rule can also be obtained by following the
temporal evolution of a population of individuals characterized
by a certain size, which is interpreted as a stochastic variable.
Without loss of generality, stem diameter D can be considered as
the relevant size and can be linked to plant height and mass using
allometric relations. For size-structured populations, it can be
shown that the distribution of individuals of sizeD conditioned at
time t, pD (D|t), is determined by the von Foerster equation (von
Foerster, 1959; Hara, 1988; Kohyama, 1992; Strigul et al., 2008)

∂pD (D|t)
∂t

=
∂
[

G (D, t) pD (D|t)
]

∂D
− µ (D, t) pD (D|t) , (42)

where G is the growth rate (i.e., G = dD/dt) and µ is a
mortality rate applied to plant density. In addition, a boundary
condition pD (D0|t = 0) (i.e., where D0 is the diameter at birth)
must be specified. In principle, the self-thinning and constant
yield laws could be obtained from the solution pD (D|t) of
Equation (42) for specific choices of the functions G and µ, and
the allometric relations between D and w. Here, a simplified
approach is followed using the perfect crown plasticity rationale
by Strigul et al. (2008) though by no means is this approach
unique (Kohyama, 1992). As before, the focus is on a mono-
specific, even-aged stand with negligible mortality until canopy
closure, a constant growth rate (so that D (t) = D0 + Gt), small
but finite initial stem diameter and diameter variance (D0 ≪Gt),
and constant allometric coefficient linking canopy area per unit
ground area to stem diameter (here ac =canopy area per unit
ground area over D2). With these conditions and assumptions,

integrating the distribution pD (D|t) over all initial sizes, the total
canopy area per unit ground area is calculated as,

∫ ∞

0
pD (D0|t = 0) ac (D0 + Gt)2 dD0 ≈ acp0G

2t2, (43)

where (D0 + Gt)2 ≈ (Gt)2 is the canopy area per unit area and
p0 is, as before, the initial plant density. When canopy closure
occurs, the canopy area per unit ground area reaches 1. Hence,
the canopy closure time t∗ can be calculated as

1 = acp0G
2t2 ⇒ t∗ =

(

G
√
acp0

)−1
. (44)

Upon canopy closure (t > t∗), plant growth must adjust to
maintain a closed canopy as time progresses, which requires
lowering plant density through the death of suppressed, shaded
plants according to,

Gt =
(

acp0
)− 1

2 . (45)

These constraints allow finding the scaling relation between plant
biomass and density in the two regimes - before (t < t∗) and after
(t > t∗) canopy closure. For t < t∗, plant biomass w ∼ D2h,
where h is the plant height as before. However, neither D nor h
depend on plant density because they only depend on time before
canopy closure. As a consequence, plant biomass w ∼ p0 when
t < t∗. In contrast, for t > t∗, plant biomass depends on plant
density because after canopy closure Equation (45) yields,

w ∼ D2h = G2t2h = h
(

acp
)−1 ∼

(

acp
)− 3

2 , (46)

where isometric scaling of height and diameter (i.e., h ∼ D) was
assumed to recover Yoda’s rule (last term).

2.8. Mechanism 8: Neighborhood
Interaction Arguments
As a bridge to the general framework in Equation (5), the
equations specifying g1(wi) for an individual i must now include
interaction terms with adjacent individuals to explicitly account
for competition. Upon specifying mortality and solving wi for
each individual, the solution yields the mean biomass w and
g2(p) by aggregating over all surviving individuals (i.e., the stand-
scale). Hence, w(t) − p(t) trajectories are constructed thereby
allowing the determination of α. The previously discussed carbon
balance approaches only accounted for competition indirectly by
varying the average individual’s photosynthetic rate with p. Also,
size-structured population approaches accounted for interactions
among individuals implicitly. Individual-based models (Aikman
and Watkinson, 1980; Westoby, 1982; Hara, 1988; Thomas and
Weiner, 1989; Adler, 1996; Li et al., 2000; Stoll et al., 2002;
Strigul et al., 2008; Chu et al., 2010; Coomes et al., 2011; Deng
et al., 2012; Rivoire and Le Moguedec, 2012; Rüger and Condit,
2012; Lin et al., 2013) are often characterized as either spatially
explicit, where plant spatial coordinates are specified, or spatially
implicit, where only the zone of influence of each plant is tracked
assuming equal spacing among individuals. Such models recover
the 3/2 or 4/3 exponents for a wide range of mortality conditions
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or metabolic thresholds, while others exhibit greater sensitivity
to competition between adjacent plants. These models follow a
continuum of competition modes bounded by two limiting cases:
size asymmetric competition where the largest plants acquire all
the resources in overlapping areas to size symmetric competition
where resources in overlapping areas are divided equally among
interacting individuals regardless of their size (Weiner, 1990;
DeMalach et al., 2016). Obviously, the degree of competition
among individuals increases in all such models when the plot
area As available for growth is diminished. These models can
recover increased variability, skewness, or bi-modality in the
histograms of individual plant biomass wi as self-thinning is
initiated at the stand level. A parsimonious, spatially implicit
model is now considered to explore how different competition
modes, initial densities, and experimental durations result in
different α values. While some spatially explicit, more complex
models are more realistic, the spatially implicit model explored
here strikes a balance between simplicity and the ability to grasp
all the proposed power-law exponents.

2.8.1. Competition and Mortality in Spatially Implicit

Models
In this model, the growth rate of an individual plant i is assumed
to be (Aikman and Watkinson, 1980)

dwi

dt
= aisif (si)− biw

2
i , (47)

where ai and bi are constants for a given stand, reflecting growth
rate per unit area and the need for more resources as individual
plant biomass increases, bi depends on the maximum individual
biomass wmax, and si measures the space occupied by plant i,
which is linked to its size by a prescribed allometric relation

si =
(

wi

kg

)2/3

, (48)

where kg is a constant relating the area or zone of influence
s to plant weight w. The 2/3 exponent is derived from
dimensional considerations for isometric growth as discussed
in section 2.1. The function f (si) encodes all of the spatial
competition on the growth rate of plant i. To represent the
space limitation and the two end-members of symmetric vs.
asymmetric size-based competition, f (si) was represented as
(Aikman and Watkinson, 1980)

f (si) =



1+

(
∑

j sj

As

)φ1 (
s

si

)φ2





−1

, (49)

where the term

∑

j sj

As
describes the space availability for resource

acquisition (i.e., a measure of crowding) and s
si

measures the
relative size of plant i compared to the mean size s. The two
exponents φ1 and φ2 describe the importance of each mode
of competition, representing respectively the roles of crowding
and size asymmetry. The plot size As sets the spatial domain
for competition. The initial number of uniformly distributed

plants within As defines p0. By varying φ1 and φ2, various
modes of competition can be explored and their effect on α

tracked. Mortality of plant i occurs when its carbon balance first
becomes negative (i.e., dwi/dt < 0). Needless to say, mortality
need not occur when dwi/dt < 0 (at least not on short time
scales) though a negative carbon balance at the individual level
implies a progressive competitive disadvantage and an increasing
likelihood of mortality. Two related issues are addressed: The
effect of f (si) on (i) the value of the self-thinning exponent
α and (ii) the emergence of constant final yield when varying
p0 across multiple stands, waiting for a fixed duration, and
observing w and p at each stand separately as shown in Figure 1

(Weiner and Freckleton, 2010).
Because growth and mortality in Equations (47) and (48) are

proportional to powers of biomass (wi) without distinguishing
live and dead parts, this model is more appropriate for
herbaceous species rather than forests. The individual tree
biomass in high density forests may consist of a considerable
proportion of dead biomass, reducing respiration costs. To avert
this complexity, large initial densities and growth rates are used
as is the case in crops. In fact, the range of parameter values
used here (Table S3) are within the range used in Aikman and
Watkinson (1980) and which were shown to agree with stand
structure observations in even-aged monoculture competition
experiments (Ford, 1975).

2.8.2. Effects of Competition Type on α and the

Emergence of Constant Final Yield
For the first set of model runs, the power-law relation between
individual biomass w(p0|Tp) at a fixed time after sowing Tp and
initial density p0 is examined, where Tp is the integration period
of the simulation (Figure 4). A constant integration period of
Tp = 50 days is maintained for these runs during which no
mortality occurs as is the case in the seminal work of Shinozaki
and Kira (1956). Here,

w(p0|Tp) ∼ p
−αCD
0 , (50)

where the subscript CD stands for competition-density. The
model runs here compare different plots at different p0 and at
a fixed period after sowing. Clearly, αCD = 1 corresponds to
the constant final yield rule as in Equation (3). In Figure 4A,
for small p0, normalized biomass per individual at the end of
the simulation w(p0|Tp)/wmax appears to be insensitive to p0.
As p0 increases, variations in αCD occur depending on choices
made about φ1 and φ2. Figure 4B shows that at relatively low
crowding exponent (φ1 = 5) and relatively large size asymmetry
exponent (φ2 = 5), αCD = 1, corresponding to invariant biomass
per ground area y(p0|Tp) = yc regardless of the initial sowing
density. This is therefore a manifestation of the constant final
yield rule but not of self-thinning since mortality is absent. As
the crowding exponent becomes large (φ1 → 10), αCD becomes
bounded between 4/3 and 3/2, and insensitive to variations in
the size asymmetry exponent φ2. These cases are compatible with
neither the constant final yield rule nor the self-thinning rule.

The temporal patterns of y(t) = w(t)p(t) associated with
various choices of p0 and φ2 are shown in Figure 5 for different
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FIGURE 4 | (A) Each line represents modeled normalized biomass per

individual for multiple simulations of different initial density p0 after a fixed

integration period of 50 days. The lines correspond to the three competition

scenarios indicated in the legend. The corresponding scaling exponent αCD is

displayed next to each plotted line. (B) Variation in αCD driven by different

competition scenarios for crops (as determined by high initial plant densities

and growth rates). Model parameters are found in Table S3.

plant properties and a longer integration period of Tp = 150
days to assess the robustness of the results (see Table S2). The
longer period allows for the presence of mortality whose onset in
time is depicted using circles in Figure 5 (p(t) < p0). Here, an
intermediate crowding exponent φ1 = 10 is kept as a constant.
Biomass per ground area reaches an equilibrium that is sensitive
to p0 for low φ2 values of 3 and 5 (Figures 5A,B). This does
not conform to the constant final yield rule. For the highly size
asymmetric mode of competition set by φ2 = 7, the steady state
biomass becomes independent of p0 (Figure 5C), consistent with
the constant final yield rule as presented by Xue and Hagihara
(1998) when density-driven mortality occurs. The fact that a
constant biomass is achieved for large φ2 underscores that the

FIGURE 5 | Modeled temporal variations of biomass per unit ground area with

time for three competition types with less and more prominent size asymmetry

effect (respectively smaller and larger φ2). (A) At low φ2, model runs with

different initial densities p0 (m−2) result in divergent final yields. Mortality only

occurs in the low density plots as indicated by the circles. The final densities

[p(150) in m−2] as indicated by the color-coded numbers on their

corresponding curves are not very different from p0. (B) At medium size

asymmetry, final yields are closer than in (A), but differences still occur after

150 days. Mortality is present in all four plots. (C) At high size asymmetry, final

yields are the same regardless of p0 90 days into the simulation which

corresponds to the constant final yield rule. All plots reach the same low final

density of 15 m−2. Model parameters are found in Table S3. Circles designate

the onset of mortality in time and color-coded numbers are the final densities

at the end of the 150 days corresponding to each simulation.

phenomenon of the constant final yield only applies to certain
types of plants competing for certain limited resources.

Self-thinning is shown in Figure 6 and Figure S1. The
differences between experiments conducted at a single stand
experiencing self-thinning sampled through time (Equation 2),
and multiple stands with varying p0 at a fixed period after
sowing (Equations 4 and 50) is seen by comparing Figure 6B

and Figure 4B. The discrepancy in the contour plots underscores
the fact that the meaning of the scaling exponent α and αCD
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FIGURE 6 | (A) Modeled normalized biomass per individual as a function of

normalized plant density for the three competition scenarios indicated in the

legend; time progresses from right to left as plants grow and density

decreases. The corresponding scaling exponents α are written next to the

plotted lines. (B) Variation in α driven by different competition scenarios. Model

parameters are found in Table S3.

is not equivalent. As earlier noted, one of the highly cited
critiques on the universality of the self-thinning exponent was
an empirical analysis by Weller (1987). Weller noted that when
analyzing multiple stands with different p0, exponents differing
from those tracking self-thinning in a single stand were obtained.
The differences between these two experimental setups have
been discussed elsewhere (Weiner and Freckleton, 2010), but are
quantified here using the same spatially implicit model (as well as
a range of φ1 and φ2).

In Figure 6, it is seen that the stronger the influence of
space availability on competition (φ1), the steeper the power-law
relation between w(t) and p(t). The effect of size asymmetry on
the α is more nuanced (Figure 6B). It is therefore seen that Yoda’s
definition of self-thinning, where α = 3/2 is achieved only when
competition for space is high (φ1 > 15) and size asymmetry
is moderate to high (φ2 > 3; Figure 6B). The green dashed

line of Figure 6A where α = 1.06 is equivalent to the scenario
in Figure 5C where the biomass per ground area is invariant
with respect to p0. Figure 6B shows that all 3 aforementioned
exponents (α ≈ 1, 4/3, 3/2) can be recovered from the same
zonal model, depending on choices of φ1 and φ2.

3. IMPACTS ON FOREST MANAGEMENT,
FUTURE OUTLOOK, AND CONCLUSIONS

Competition for resources among same-species individuals
sharing the same resource niche can be as complex as interactions
among individuals of different species (Perry et al., 2008). That
such competition among individuals of the same species results in
power-law relations between the mean weight of an individual w
and plant density p remains scientifically challenging to explain.
Yet, such power-law relations are appealing to agricultural and
forestry practitioners and have routinely been used in crop
and forest management. In this context, mortality is only due
to resource competition between individual plants, neglecting
mortality due to external factors such as ice storms, hurricanes,
forest fires, extended droughts, insect outbreaks, and human
thinning of forests for management. As such, they set an
“upper bound” on mean individual size for a given stocking
(or planting) density (Luyssaert et al., 2011). In the case of
crop management, initial planting density emerges as a key
determinant of individual biomass and elapsed time when the
steady state yield is reached; whereas in the case of forest
management the w− p trajectories serve as a guide to when, and
how much and often stands must be thinned to either maximize
profitability or to mitigate hazards such as forest fires, insect
outbreaks, or drought-induced mortality.

As already alluded to by Reineke (1933), forest density
management utilizes size-density indices because they are
presumably independent of site quality and stand age and
the self-thinning line has taken center stage in determining
management regimes (Begin et al., 2001). Such a presumably
time-invariant power-law relation betweenw and p enables forest
managers to also compare levels of growing stock regardless
of differences in site quality or stand age. A particular set of
management objectives resulting in an ideal p value can be
projected forward or backward in time to a different development
stage using the aforementioned w − p trajectories if the power-
law exponent is known (e.g., α = 3/2). The self-thinning rule is a
particularly powerful tool in combination (or as a part of) growth
models to inform managers when the stands reach a particular
management regime (Landsberg and Waring, 1997).

This review has focused on the many hypothetical
mechanisms generating power-law relations between w and
p due to the constraints imposed on resource competition in
monospecific plots. Depending on the resource constraints
(e.g., structural, allometric, hydraulic, supply of energy)
and the type of competition imposed, multiple arguments
suggest that the exponent of the power-law solution to
dw/dp = g3(w, p) converges toward one of the three α values: 1,
4/3, 3/2 (Table 1). The different α values reflect the numerous
environmental influences and physiological factors and the
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degree of asymmetry of the competitive interaction (e.g., light
interception is dominated by the tallest trees; Craine and
Dybzinski, 2013). Therefore, for foresters aiming to optimize
productivity, they should manage tree density based on the
specific resource constraints shaping inter-plant competition.
Often, the cultivation strategy maximizing plant density also
minimizes resource availability such as soil water, i.e., the tragedy
of the commons (Hardin, 1968). However, forest managers may
be able to avoid this risky strategy by balancing resource use and
plant density. This may be increasingly relevant in a changing
climate where frequent and extended droughts are becoming
a reality in many parts of the world. If storm intensities and
inter-arrival times change in relatively short time-scales, then
rooting profiles that successfully harnessed soil water in the past
might become less effective (Farooq et al., 2009).

The theoretical results presented can be used to generate
hypotheses on what controls α, to be tested in specific
experiments or simulation studies. For example, species
characterized by contrasting growth patterns or hydraulic traits
could be grown under the same conditions to test predicted
patterns of α. Similarly, trends in α could be assessed along
climatic and edaphic gradients to test predicted deviations from
the 3/2 or 4/3 values. The focus was purposely restricted to
monospecific stands, but self-thinning also occurs in diverse
communities, though niche complementarity and facilitation
effects can become important drivers of the plant mass-density
relations (Loreau and Hector, 2001). It is possible that denser
communities containing a greater number of small individuals
(belonging to more than one species) emerge when these effects
are at play compared to monospecific stands. To tackle this
problem, models describing a multitude of species (or functional
traits), or capturing differences across individuals, should be
used, which we expect will require a broader range of scaling
exponents as the communities become more diverse.

The finding that the self-thinning exponent is not invariant
has several consequences for forest managers designing their
thinning regimes based on an invariant self-thinning rule
(Drew and Flewelling, 1977). Time variance has been attributed
to stand aging, canopy closure and environmental change,
including increasing aridity in many parts of the world. Several
amendments to the size-density indices presented in this text
have been proposed elsewhere to take these effects into account
(Zeide, 2001; Ge et al., 2017; Aguirre et al., 2018; Bravo-Oviedo
et al., 2018; Zhang et al., 2019). Forest managers may expect
a given self-thinning slope based on data from space-for-time
substitution and, thus, set their thinning or harvest operations
based on this expectation (Drew and Flewelling, 1979). For
example, the self-thinning rule can be used to characterize
“reference” conditions and, based on that, define indicators
of the degree of land use intensity (Luyssaert et al., 2011).
Such indicators quantify how far a given stand is from either
a pristine forest or a stand following the self-thinning rule.
However, as shown here, the shape of the self-thinning rule may
vary depending on growth conditions and therefore indicators
based on this curve may be sensitive to the chosen exponent
and intercept.

A line of inquiry of increasing relevance to crops and
plantation forestry alike is the effect of environmental change
(e.g., elevated atmospheric CO2, or air temperature) on C or α.
Do the w − p trajectories remain the same or are they altered
with these changes? Does elevated atmospheric CO2 simply speed
up the trajectories in the w − p phase plane? Does α remain
constant but C likely to vary due to changes in leaf area index or
other ecosystem properties? These are but a few of the questions
that could motivate future work (Brunet-Navarro et al., 2016;
Jump et al., 2017; Bravo-Oviedo et al., 2018). The implications
of these answers to forest management cannot be overstated. If
C or α vary under future conditions, management tactics will
need to be adjusted accordingly. Even if the parameters of the
self-thinning rule do not change, higher CO2 and air temperature
may promote growth (in absence of other limitations), resulting
in faster movements along the w− p trajectory. This alone would
require adjusting the thinning schedule.Modeling studies suggest
that maintaining under-stocked stands (below the self-thinning
curve) by more frequent or intense thinning could compensate
negative impacts of future environmental conditions on the tree
C balance (Collalti et al., 2018). However, for new thinning
approaches to be effective, they will need to be based on a self-
thinning rule that accounts for future growth conditions. For
example, Equation (41) suggests that lower values of α can be
expected if autotrophic respiration increases more than GPP in
a warmer world, or if stands become nutrient-limited or age
faster, resulting in lower CUE (Collalti et al., 2018). The use of
such power-law expressions in forest management map onto the
famous quote by the great Russian physicist Lev Landau:

Money is in the exponent. And exponent needs to be

calculated precisely.

Power law relations between measures of biomass and density
have been the subject of over a century of experimentation and
theoretical analysis. They not only describe biomass development
as a function of density for a single stand but also steady-state
biomass as a function of maximum density for species ranging
nine orders of magnitude by weight. The ubiquity and relative
invariance of these power law relations makes them a research
breeding ground to uncover the underlying mechanisms of inter-
plant competition and develop effective management strategies
for forests and croplands increasingly suffering from aridity in a
changing climate.
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Manzoni, S., Čapek, P., Porada, P., Thurner, M., Winterdahl, M., Beer, C.,

et al. (2018). Reviews and syntheses: carbon use efficiency from organisms

to ecosystems-definitions, theories, and empirical evidence. Biogeosciences 15,

5929–5949. doi: 10.5194/bg-15-5929-2018

McCulloh, K. A., Sperry, J. S., and Adler, F. R. (2003). Water transport in plants

obeys Murray’s law. Nature 421, 939–942. doi: 10.1038/nature01444

McMahon, T. (1973). Size and shape in biology: elastic criteria impose limits

on biological proportions, and consequently on metabolic rates. Science 179,

1201–1204. doi: 10.1126/science.179.4079.1201

Miyanishi, K., Hoy, A., and Cavers, P. (1979). A generalized law of self-thinning

in plant populations (self-thinning in plant populations). J. Theor. Biol. 78,

439–442. doi: 10.1016/0022-5193(79)90342-4

Murray, C. D. (1926). The physiological principle ofminimumwork: I. the vascular

system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12:207.

doi: 10.1073/pnas.12.3.207

Niklas, K. J. (1994). Plant Allometry: The Scaling of Form and Process. Chicago, IL:

University of Chicago Press.

Niklas, K. J., and Spatz, H.-C. (2004). Growth and hydraulic (not mechanical)

constraints govern the scaling of tree height and mass. Proc. Natl. Acad. Sci.

U.S.A. 101, 15661–15663. doi: 10.1073/pnas.0405857101

Oren, R., Schulze, E.-D., Matyssek, R., and Zimmermann, R. (1986). Estimating

photosynthetic rate and annual carbon gain in conifers from specific

leaf weight and leaf biomass. Oecologia 70, 187–193. doi: 10.1007/BF003

79238

Pacala, S., and Weiner, J. (1991). Effects of competitive asymmetry on a

local density model of plant interference. J. Theor. Biol. 149, 165–179.

doi: 10.1016/S0022-5193(05)80275-9

Pahor, S. (1985). On the -3/2 power thinning law in plant ecology. J. Theor. Biol.

112, 535–537. doi: 10.1016/S0022-5193(85)80020-5

Peet, R. K., and Christensen, N. L. (1987). Competition and tree death. Bioscience

37, 586–595. doi: 10.2307/1310669

Perry, D. A. (1984). A model of physiological and allometric

factors in the self-thinning curve. J. Theor. Biol. 106, 383–401.

doi: 10.1016/0022-5193(84)90037-7

Perry, D. A., Oren, R., and Hart, S. C. (2008). Forest Ecosystems. Baltimore, MD:

JHU Press.

Pickard, W. (1983). Three interpretations of the self-thinning rule. Ann. Bot. 51,

749–757. doi: 10.1093/oxfordjournals.aob.a086526

Reineke, L. H. (1933). Perfecting a stand-density index for even-aged forests. J.

Agric. Res. 46, 627–630.

Rivoire, M., and Le Moguedec, G. (2012). A generalized self-thinning relationship

for multi-species and mixed-size forests. Ann. Forest Sci. 69, 207–219.

doi: 10.1007/s13595-011-0158-z

Roderick, M., and Barnes, B. (2004). Self-thinning of plant

populations from a dynamic viewpoint. Func. Ecol. 18, 197–203.

doi: 10.1111/j.0269-8463.2004.00832.x

Rüger, N., and Condit, R. (2012). Testing metabolic theory with models

of tree growth that include light competition. Func. Ecol. 26, 759–765.

doi: 10.1111/j.1365-2435.2012.01981.x

Shinozaki, K., and Kira, T. (1956). Intraspecific competition among higher plants.

VII. Logistic theory of the CD effect. J. Inst. Polytech. Osaka City Univ. Ser. 7,

35–72.

Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T. (1964). A quantitative analysis

of plant form-the pipe model theory: I. Basic analyses. Jpn. J. Ecol. 14,

97–105.

Spencer, H. (1864). The Principles of Biology. London, UK: Williams and Norgate.

Stoll, P., Weiner, J., Muller-Landau, H., Müller, E., and Hara, T. (2002). Size

symmetry of competition alters biomass-density relationships. Proc. R. Soc.

Lond. B Biol. Sci. 269, 2191–2195. doi: 10.1098/rspb.2002.2137

Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S. (2008). Scaling

from trees to forests: tractable macroscopic equations for forest dynamics. Ecol.

Monogr. 78, 523–545. doi: 10.1890/08-0082.1

Thomas, S. C., and Weiner, J. (1989). Including competitive asymmetry in

measures of local interference in plant populations. Oecologia 80, 349–355.

doi: 10.1007/BF00379036

Thompson, D. W. (1942). On Growth and Form. Cambridge, UK: Cambridge

University Press.

Thompson, S. E., and Katul, G. G. (2012). Hydraulic determinism as a constraint

on the evolution of organisms and ecosystems. J. Hydraul. Res. 50, 547–557.

doi: 10.1080/00221686.2012.732969

Thurner, M., Beer, C., Carvalhais, N., Forkel, M., Santoro, M., Tum, M.,

et al. (2016). Large-scale variation in boreal and temperate forest carbon

turnover rate related to climate. Geophys. Res. Lett. 43, 4576–4585.

doi: 10.1002/2016GL068794

Tsoularis, A., and Wallace, J. (2002). Analysis of logistic growth models. Math.

Biosci. 179, 21–55. doi: 10.1016/S0025-5564(02)00096-2

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son

accroissement. Correspondance mathématique et physique publiée par a.

Quetelet 10, 113–121.

Vogel, S. (1988). Life’s Devices: The Physical World of Animals and Plants.

Princeton, NJ: Princeton University Press.

Voit, E. (1988). Dynamics of self-thinning plant stands. Ann. Bot. 62, 67–78.

doi: 10.1093/oxfordjournals.aob.a087637

von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Q. Rev.

Biol. 32, 217–231. doi: 10.1086/401873

Frontiers in Forests and Global Change | www.frontiersin.org 19 May 2020 | Volume 3 | Article 62

https://doi.org/10.1093/oxfordjournals.aob.a086679
https://doi.org/10.1016/0169-5347(88)90175-9
https://doi.org/10.1126/science.162.3859.1243
https://doi.org/10.3389/fpls.2016.00944
https://doi.org/10.1038/186022b0
https://doi.org/10.1007/BF02488355
https://doi.org/10.1016/j.advwatres.2018.06.002
https://doi.org/10.1111/gcb.13636
https://doi.org/10.1006/anbo.1998.0782
https://doi.org/10.3733/hilg.v06n11p315
https://doi.org/10.1093/oxfordjournals.aob.a088502
https://doi.org/10.1016/S0378-1127(97)00026-1
https://doi.org/10.1016/S0304-3800(00)00313-6
https://doi.org/10.1371/journal.pone.0057612
https://doi.org/10.1038/35083573
https://doi.org/10.1890/10-2395.1
https://doi.org/10.5194/bg-15-5929-2018
https://doi.org/10.1038/nature01444
https://doi.org/10.1126/science.179.4079.1201
https://doi.org/10.1016/0022-5193(79)90342-4
https://doi.org/10.1073/pnas.12.3.207
https://doi.org/10.1073/pnas.0405857101
https://doi.org/10.1007/BF00379238
https://doi.org/10.1016/S0022-5193(05)80275-9
https://doi.org/10.1016/S0022-5193(85)80020-5
https://doi.org/10.2307/1310669
https://doi.org/10.1016/0022-5193(84)90037-7
https://doi.org/10.1093/oxfordjournals.aob.a086526
https://doi.org/10.1007/s13595-011-0158-z
https://doi.org/10.1111/j.0269-8463.2004.00832.x
https://doi.org/10.1111/j.1365-2435.2012.01981.x
https://doi.org/10.1098/rspb.2002.2137
https://doi.org/10.1890/08-0082.1
https://doi.org/10.1007/BF00379036
https://doi.org/10.1080/00221686.2012.732969
https://doi.org/10.1002/2016GL068794
https://doi.org/10.1016/S0025-5564(02)00096-2
https://doi.org/10.1093/oxfordjournals.aob.a087637
https://doi.org/10.1086/401873
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Mrad et al. Power Laws in Mono-Specific Stands

von Foerster, H. (1959). “Some remarks on changing populations,” in The Kinetics

of Cellular Proliferation, ed J. F. Stohlman (New York, NY: Grune and Stratton),

382–407.

Waring, R., Landsberg, J., and Williams, M. (1998). Net primary production of

forests: a constant fraction of gross primary production? Tree Physiol. 18,

129–134. doi: 10.1093/treephys/18.2.129

Watkinson, A. (1980). Density-dependence in single-species populations

of plants. J. Theor. Biol. 83, 345–357. doi: 10.1016/0022-5193(80)

90297-0

Weiner, J. (1990). Asymmetric competition in plant populations. Trends Ecol. Evol.

5, 360–364. doi: 10.1016/0169-5347(90)90095-U

Weiner, J., and Freckleton, R. P. (2010). Constant final yield. Annu. Rev. Ecol. Evol.

Syst. 41, 173–192. doi: 10.1146/annurev-ecolsys-102209-144642

Weller, D. E. (1987). A reevaluation of the -3/2 power rule of plant self-thinning.

Ecol. Monogr. 57, 23–43. doi: 10.2307/1942637

West, G. (2017). Scale: The Universal Laws of Growth, Innovation, Sustainability,

and the Pace of Life in Organisms, Cities, Economies, and Companies.

New York, NY: Penguin.

West, G. B., Brown, J. H., and Enquist, B. J. (1997). A general model for

the origin of allometric scaling laws in biology. Science 276, 122–126.

doi: 10.1126/science.276.5309.122

Westoby, M. (1982). Frequency distributions of plant size during competitive

growth of stands: the operation of distribution-modifying functions. Ann. Bot.

50, 733–735. doi: 10.1093/oxfordjournals.aob.a086416

Westoby, M. (1984). The self-thinning rule. Adv. Ecol. Res. 14, 167–225.

doi: 10.1016/S0065-2504(08)60171-3

White, J. (1981). The allometric interpretation of the self-thinning rule. J. Theor.

Biol. 89, 475–500. doi: 10.1016/0022-5193(81)90363-5

White, J., and Harper, J. (1970). Correlated changes in plant size and number in

plant populations. J. Ecol. 58,467–485. doi: 10.2307/2258284

Willey, R. W., and Heath, S. B. (1969). The quantitative relationships

between plant population and crop yield. Adv. Agron. 21, 281–321.

doi: 10.1016/S0065-2113(08)60100-5

Xue, L., and Hagihara, A. (1998). Growth analysis of the self-thinning

stands of Pinus densiflora Sieb. et Zucc. Ecol. Res. 13, 183–191.

doi: 10.1046/j.1440-1703.1998.00256.x

Yoda, K. (1963). Self-thinning in overcrowded pure stands under cultivated and

natural conditions (intraspecific competition among higher plants. J. Biol.

Osaka City Univers. 14, 107–129.

Zeide, B. (2001). Natural thinning and environmental change: an

ecological process model. Forest Ecol. Manage. 154, 165–177.

doi: 10.1016/S0378-1127(00)00621-6

Zhang, W.-P., Jia, X., Bai, Y.-Y., and Wang, G.-X. (2011). The difference between

above- and below-ground self-thinning lines in forest communities. Ecol. Res.

26, 819–825. doi: 10.1007/s11284-011-0843-2

Zhang, X., Cao, Q. V., Lu, L., Wang, H., Duan, A., and Zhang, J. (2019). Use of

modified Reineke’s stand density index in predicting growth and survival of

Chinese fir plantations. Forest Sci. 65, 1–8. doi: 10.1093/forsci/fxz033

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Mrad, Manzoni, Oren, Vico, Lindh and Katul. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 20 May 2020 | Volume 3 | Article 62

https://doi.org/10.1093/treephys/18.2.129
https://doi.org/10.1016/0022-5193(80)90297-0
https://doi.org/10.1016/0169-5347(90)90095-U
https://doi.org/10.1146/annurev-ecolsys-102209-144642
https://doi.org/10.2307/1942637
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1093/oxfordjournals.aob.a086416
https://doi.org/10.1016/S0065-2504(08)60171-3
https://doi.org/10.1016/0022-5193(81)90363-5
https://doi.org/10.2307/2258284
https://doi.org/10.1016/S0065-2113(08)60100-5
https://doi.org/10.1046/j.1440-1703.1998.00256.x
https://doi.org/10.1016/S0378-1127(00)00621-6
https://doi.org/10.1007/s11284-011-0843-2
https://doi.org/10.1093/forsci/fxz033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles

	Recovering the Metabolic, Self-Thinning, and Constant Final Yield Rules in Mono-Specific Stands
	1. Introduction
	1.1. The Self-Thinning Rule
	1.2. The Constant Final Yield Rule
	1.3. Interpreting Self-Thinning Exponents

	2. Theory
	2.1. Mechanism 1: Dimensional Analysis and Allometric Constraints
	2.1.1. Extended Analysis: Applying the Principle of Similitude
	2.1.2. Allometry and Growth Habits as Constraints
	2.1.3. Extended Analysis: Reineke's vs. Yoda's Rules

	2.2. Mechanism 2: Structural and Biomechanical Constraints
	2.3. Mechanism 3: Metabolic Limitations
	2.3.1. A Steady State Resource Balance
	2.3.2. Extended Analysis: Constraints on the Trans-location Network Distribution

	2.4. Mechanism 4: Hydraulic Constraints on Growth
	2.4.1. Extended Analysis: An Alternative Hydraulic Link to Stem Diameter

	2.5. Mechanism 5: Spatial Averaging Arguments
	2.5.1. Extended Analysis: Recovering the alpha=-1 Exponent From a Dynamical System
	2.5.2. Extended Analysis: the Effects of Invariant Carbon-Use Efficiency on Self-Thinning

	2.6. Mechanism 6: Dynamical Systems Theories for Plant Carbon Balance
	2.6.1. Extended Analysis: Power-Laws From the von Bertalanffy Equation
	2.6.2. Phase Space Trajectories Constraints on alpha

	2.7. Mechanism 7: Size Distribution Arguments
	2.8. Mechanism 8: Neighborhood Interaction Arguments
	2.8.1. Competition and Mortality in Spatially Implicit Models
	2.8.2. Effects of Competition Type on alpha and the Emergence of Constant Final Yield


	3. Impacts On Forest Management, Future Outlook, and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


