8 research outputs found

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Structure of the chloroplast ribosome: novel domains for translation regulation.

    Get PDF
    Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 A. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs

    Chloroplast and Mitochondrial Proteases in Arabidopsis. A Proposed Nomenclature

    Get PDF
    The identity and scope of chloroplast and mitochondrial proteases in higher plants has only started to become apparent in recent years. Biochemical and molecular studies suggested the existence of Clp, FtsH, and DegP proteases in chloroplasts, and a Lon protease in mitochondria, although currently the full extent of their role in organellar biogenesis and function remains poorly understood. Rapidly accumulating DNA sequence data, especially from Arabidopsis, has revealed that these proteolytic enzymes are found in plant cells in multiple isomeric forms. As a consequence, a systematic approach was taken to catalog all these isomers, to predict their intracellular location and putative processing sites, and to propose a standard nomenclature to avoid confusion and facilitate scientific communication. For the Clp protease most of the ClpP isomers are found in chloroplasts, whereas one is mitochondrial. Of the ATPase subunits, the one ClpD and two ClpC isomers are located in chloroplasts, whereas both ClpX isomers are present in mitochondria. Isomers of the Lon protease are predicted in both compartments, as are the different forms of FtsH protease. DegP, the least characterized protease in plant cells, has the most number of isomers and they are predicted to localize in several cell compartments. These predictions, along with the proposed nomenclature, will serve as a framework for future studies of all four families of proteases and their individual isomers

    The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

    No full text
    The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size

    The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    corecore