55 research outputs found

    The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats

    Get PDF
    Since the Archean, N2 has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life, therefore the geobiological nitrogen cycle is a fundamental factor in the long term evolution of both Earth and Earth-like exoplanets. We discuss the development of the Earth's N2 atmosphere since the planet's formation and its relation with the geobiological cycle. Then we suggest atmospheric evolution scenarios and their possible interaction with life forms: firstly, for a stagnant-lid anoxic world, secondly for a tectonically active anoxic world, and thirdly for an oxidized tectonically active world. Furthermore, we discuss a possible demise of present Earth's biosphere and its effects on the atmosphere. Since life forms are the most efficient means for recycling deposited nitrogen back into the atmosphere nowadays, they sustain its surface partial pressure at high levels. Also, the simultaneous presence of significant N2 and O2 is chemically incompatible in an atmosphere over geological timescales. Thus, we argue that an N2-dominated atmosphere in combination with O2 on Earth-like planets within circumstellar habitable zones can be considered as a geo-biosignature. Terrestrial planets with such atmospheres will have an operating tectonic regime connected with an aerobe biosphere, whereas other scenarios in most cases end up with a CO2-dominated atmosphere. We conclude with implications for the search for life on Earth-like exoplanets inside the habitable zones of M to K-stars

    Una nueva estrategia universitaria. La necesidad de una reforma universitaria europea

    Get PDF

    The Exosphere as a Boundary: Origin and Evolution of Airless Bodies in the Inner Solar System and Beyond Including Planets with Silicate Atmospheres

    Get PDF
    In this review we discuss all the relevant solar/stellar radiation and plasma parameters and processes that act together in the formation and modification of atmospheres and exospheres that consist of surface-related minerals. Magma ocean degassed silicate atmospheres or thin gaseous envelopes from planetary building blocks, airless bodies in the inner Solar System, and close-in magmatic rocky exoplanets such as CoRot-7b, HD 219134 b and 55 Cnc e are addressed. The depletion and fractionation of elements from planetary embryos, which act as the building blocks for proto-planets are also discussed. In this context the formation processes of the Moon and Mercury are briefly reviewed. The Lunar surface modification since its origin by micrometeoroids, plasma sputtering, plasma impingement as well as chemical surface alteration and the search of particles from the early Earth’s atmosphere that were collected by the Moon on its surface are also discussed. Finally, we address important questions on what can be learned from the study of Mercury’s environment and its solar wind interaction by MESSENGER and BepiColombo in comparison with the expected observations at exo-Mercurys by future space-observatories such as the JWST or ARIEL and ground-based telescopes and instruments like SPHERE and ESPRESSO on the VLT, and vice versa

    The long-term evolution of the atmosphere of Venus: processes and feedback mechanisms

    Get PDF
    In this chapter, we focus on the long-term evolution of the atmosphere of Venus, and how it has been affected by interior/exterior cycles. The formation and evolution of Venus's atmosphere, leading to the present-day surface conditions, remain hotly debated and involve questions that tie into many disciplines. Here, we explore the mechanisms that shaped the evolution of the atmosphere, starting with the volatile sources and sinks. Going from the deep interior to the top of the atmosphere, we describe fundamental processes such as volcanic outgassing, surface-atmosphere interactions, and atmosphere escape. Furthermore, we address more complex aspects of the history of Venus, including the role of meteoritic impacts, how magnetic field generation is tied into long-term evolution, and the implications of feedback cycles for atmospheric evolution. Finally, we highlight three plausible end-member evolutionary pathways that Venus might have followed, from the accretion to its present-day state, based on current modeling and observations. In a first scenario, the planet was desiccated early-on, during the magma ocean phase, by atmospheric escape. In a second scenario, Venus could have harbored surface liquid water for long periods of time, until its temperate climate was destabilized and it entered a runaway greenhouse phase. In a third scenario, Venus's inefficient outgassing could have kept water inside the planet, where hydrogen was trapped in the core and the mantle was oxidized. We discuss existing evidence and future observations/missions needed to refine our understanding of the planet's history and of the complex feedback cycles between the interior, surface, and atmosphere that operate in the past, present or future of Venus

    Origin and evolution of the atmospheres of early Venus, Earth and Mars

    Get PDF
    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥0.5 MEarth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N2 atmospheres. The buildup of atmospheric N2, O2, and the role of greenhouse gases such as CO2 and CH4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.PostprintPeer reviewe

    Program FFlexCom — High frequency flexible bendable electronics for wireless communication systems

    Get PDF
    Today, electronics are implemented on rigid substrates. However, many objects in daily-life are not rigid — they are bendable, stretchable and even foldable. Examples are paper, tapes, our body, our skin and textiles. Until today there is a big gap between electronics and bendable daily-life items. Concerning this matter, the DFG Priority Program FFlexCom aims at paving the way for a novel research area: Wireless communication systems fully integrated on an ultra-thin, bendable and flexible piece of plastic or paper. The Program encompasses 13 projects led by 25 professors. By flexibility we refer to mechanical flexibility, which can come in flavors of bendability, foldability and, stretchability. In the last years the speed of flexible devices has massively been improved. However, to enable functional flexible systems and operation frequencies up to the sub-GHz range, the speed of flexible devices must still be increased by several orders of magnitude requiring novel system and circuit architectures, component concepts, technologies and materials

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum
    corecore