413 research outputs found

    Approaching In Vivo Models of Pneumococcus–Host Interaction: Insights into Surface Proteins, Capsule Production, and Extracellular Vesicles

    Get PDF
    Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the “shaving” approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen

    Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides

    Get PDF
    Subwavelength grating (SWG) structures are an essential tool in silicon photonics, enabling the synthesis of metamaterials with a controllable refractive index. Here we propose, for the first time to the best of our knowledge, tilting the grating elements to gain control over the anisotropy of the metamaterial. Rigorous finite difference time domain simulations demonstrate that a 45° tilt results in an effective index variation on the fundamental TE mode of 0.23 refractive index units, whereas the change in the TM mode is 20 times smaller. Our simulation predictions are corroborated by experimental results. We furthermore propose an accurate theoretical model for designing tilted SWG structures based on rotated uniaxial crystals that is functional over a wide wavelength range and for both the fundamental and higher order modes. The proposed control over anisotropy opens promising venues in polarization management devices and transformation optics in silicon photonics.Universidad de Málaga (UMA); Ministerio de Economía y Competitividad (MINECO) (IJCI-2016-30484, TEC2015-71127-C2-R, TEC2016-80718-R); Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/06762); European Regional Development Fund (ERDF); Comunidad de Madrid (SINFOTON-CM S2013/MIT-2790); European Association of National Metrology Institutes (EURAMET) (H2020-MSCA-RISE-2015:SENSIBLE, JRP-i22 14IND13 Photind)

    Proteomic analysis of goat milk kefir: profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity

    Get PDF
    Kefir is a fermented dairy product, associated to health benefits because of being a probiotic and due to the presence of molecules with biological activity. In this work, we have profiled the peptide composition of goat milk kefir at three different fermentation times using a peptidomics approach, in order to study changes in peptide concentrations and patterns of protein digestion throughout the fermentation time. We identified 2328 unique peptides corresponding to 22 protein annotations, with a maximum of peptides found after 24 h fermentation. We established different digestion patterns according to the nature of the proteins, and quantified the changes in the peptides appearing in all the fermentation times. We also identified 11 peptides that matched exactly to sequences with biological activity in databases, almost all of them belonging to caseins. This is the most comprehensive proteomic analysis of goat milk kefir to date

    Inverse relation between FASN expression in human adipose tissue and the insulin resistance level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARÎł, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARÎł expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity.</p> <p>Methods</p> <p>The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARÎł gene expression levels, anthropometric and biochemical variables.</p> <p>Results</p> <p>The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARÎł is not related to carbohydrate metabolism.</p> <p>Conclusions</p> <p>We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.</p

    Extracellular Vesicles from Different Pneumococcal Serotypes Are Internalized by Macrophages and Induce Host Immune Responses

    Get PDF
    Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes

    Pattern Recognition of GC-FID Profiles of Volatile Compounds in Brandy de Jerez Using a Chemometric Approach Based on Their Instrumental Fingerprints

    Get PDF
    Brandy de Jerez is a unique spirit produced in Southern Spain under Protected Geographical Indication “Brandy de Jerez” (PGI). Two key factors for the production of quality brandies are the original wine spirit and its aging process. They are significantly conditioned by specific variables related to the base wine and the distillation method employed to produce the wine spirit used to obtain a finally aged brandy. This final beverage is therefore strongly influenced by its production process. The chromatographic instrumental fingerprints (obtained by GC FID) of the major volatile fraction of a series of brandies have been examined by applying a chemometric approach based on unsupervised (hierarchical cluster analysis and principal component analysis) and supervised pattern recognition tools (partial least squares–discriminant analysis and support vector machine). This approach was able to identify the fermentation conditions of the original wine, the distillation method used to produce the wine spirit, and the aging process as the most influential factors on the volatile profil

    Influence of Oak Species, Toasting Degree, and Aging Time on the Differentiation of Brandies Using a Chemometrics Approach Based on Phenolic Compound UHPLC Fingerprints

    Get PDF
    Oak wood is the main material used by coopers to manufacture casks for the aging of spirits or wines. Phenolic compounds are the main components extracted from the wood during spirit aging. In the present study, a chemometric approach based on unsupervised (PCA) and supervised (PLS-DA) pattern recognition techniques has been applied to the chromatographic instrumental fingerprints, obtained by ultra-high-performance liquid chromatography (UHPLC) at 280 nm, of the phenolic profiles of brandies aged in casks made of different oak wood species. The resulting natural data groupings and the PLS-DA models have revealed that the oak wood species, the toasting level, and the aging time are the most influential factors on the phenolic profile of the final products. Fingerprinting should be considered as a very useful feature, as it represents a considerable advantage, in terms of internal and quality control, for brandy producers.This research has been supported by the University of Cádiz and Bodegas Fundador, S.L.U. (ref.: OT2019/108, OT2020/128, OT2021/076, OT2021/131, and OT2022/080). The authors wish to thank the University of Cádiz and Bodegas Fundador, S.L.U., for the industrial predoctoral contract TDI-8-18, granted to M.G.-C. and the technical support from the SPI of Viticulture and the Agri-food Research Institute (IVAGRO) of the University of Cádiz for the analysis of the samples

    Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers

    Get PDF
    The aim of this work was to rationally design and characterize nanocapsules (NCs) composed of an oily core and a polyarginine (PARG) shell, intended for oral peptide delivery. The cationic polyaminoacid, PARG, and the oily core components were selected based on their penetration enhancing properties. Insulin was adopted as a model peptide to assess the performance of the NCs. After screening numerous formulation variables, including different oils and surfactants, we defined a composition consisting of oleic acid, sodium deoxycholate (SDC) and Span 80. This selected NCs composition, produced by the solvent displacement technique, exhibited the following key features: (i) an average size of 180 nm and a low polydispersity (0.1), (ii) a high insulin association efficacy (80–90% AE), (iii) a good colloidal stability upon incubation in simulated intestinal fluids (SIF, FaSSIF-V2, FeSSIF-V2), and (iv) the capacity to control the release of the associated insulin for > 4 h. Furthermore, using the Caco-2 model cell line, PARG nanocapsules were able to interact with the enterocytes, and reversibly modify the TEER of the monolayer. Both cell adhesion and membrane permeabilization could account for the pronounced transport of the NCs-associated insulin (3.54%). This improved interaction was also visualized by confocal fluorescent microscopy following oral administration of PARG nanocapsulesto mice. Finally, in vivo efficacy studies performed in normoglycemic rats showed a significant decrease in their plasma glucose levels after treatment. In conclusion, here we disclose key formulation elements for making possible the oral administration of peptidesThis work was supported by the European TRANS-INT Consortium, which received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 281035. Z. Niu also would like to thank the Chinese Scholarship Council for his scholarshipS

    Polarization independent 2Ă—2 multimode interference coupler with bricked subwavelength metamaterial

    Get PDF
    The silicon-on-insulator (SOI) platform enables high integration density in photonic integrated circuits while maintaining compatibility with CMOS fabrication processes. Nevertheless, its inherently high modal birefringence hinders the development of polarization-insensitive devices. The dispersion and anisotropy engineering leveraging subwavelength grating (SWG) metamaterials makes possible the development of polarization agnostic waveguide components. In this work we build upon the bricked SWG metamaterial nanostructures to design a polarization independent 2×2 multimode interference (MMI) coupler for the 220 nm SOI platform, operating in the telecom O-band. The designed device exhibits a 160 nm bandwidth with excess loss, polarization dependent loss and imbalance below 1 dB and phase error lower than 5°.Ministerio de Economía y Competitividad (PID2019-106747RB-I00), Junta de Andalucía (P18-RT-1453, UMA20-FEDERJA-158), Ministerio de Ciencia Innovación y Universidades (FPU16/06762, FPU19/02408) and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore