189 research outputs found

    Stability of negative ionization fronts: regularization by electric screening?

    Get PDF
    We recently have proposed that a reduced interfacial model for streamer propagation is able to explain spontaneous branching. Such models require regularization. In the present paper we investigate how transversal Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the derivation of analytical asymptotes for arbitrary fields: for small wave-vector k, the growth rate s(k) grows linearly with k, for large k, it saturates at some positive plateau value. We give a physical interpretation of these results.Comment: 11 pages, 2 figure

    Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes

    Get PDF
    Non-ionized media subject to strong fields can become locally ionized by penetration of finger-shaped streamers. We study negative streamers between planar electrodes in a simple deterministic continuum approximation. We observe that for sufficiently large fields, the streamer tip can split. This happens close to Firsov's limit of `ideal conductivity'. Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous fingering. For future quantitative analytical progress, our stability analysis of planar fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised version of March 10, 200

    Critical temperature for kaon condensation in color-flavor locked quark matter

    Full text link
    We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark matter at nonzero temperature. Chiral symmetry breaking in this phase of cold and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these being the charged and neutral kaons K^+ and K^0. At zero temperature, Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped, this kaon condensed CFL phase can, for energies below the fermionic energy gap, be described by an effective theory for the bosonic modes. We use this effective theory to investigate the melting of the condensate: we determine the temperature-dependent kaon masses self-consistently using the two-particle irreducible effective action, and we compute the transition temperature for Bose-Einstein condensation. Our results are important for studies of transport properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric neutrality on critical temperature added; references added; version to appear in J.Phys.

    Personalised depression forecasting using mobile sensor data and ecological momentary assessment

    Get PDF
    Introduction Digital health interventions are an effective way to treat depression, but it is still largely unclear how patients’ individual symptoms evolve dynamically during such treatments. Data-driven forecasts of depressive symptoms would allow to greatly improve the personalisation of treatments. In current forecasting approaches, models are often trained on an entire population, resulting in a general model that works overall, but does not translate well to each individual in clinically heterogeneous, real-world populations. Model fairness across patient subgroups is also frequently overlooked. Personalised models tailored to the individual patient may therefore be promising. Methods We investigate different personalisation strategies using transfer learning, subgroup models, as well as subject-dependent standardisation on a newly-collected, longitudinal dataset of depression patients undergoing treatment with a digital intervention (N=65 patients recruited). Both passive mobile sensor data as well as ecological momentary assessments were available for modelling. We evaluated the models’ ability to predict symptoms of depression (Patient Health Questionnaire-2; PHQ-2) at the end of each day, and to forecast symptoms of the next day. Results In our experiments, we achieve a best mean-absolute-error (MAE) of 0.801 (25% improvement) for predicting PHQ-2 values at the end of the day with subject-dependent standardisation compared to a non-personalised baseline (MAE=1.062). For one day ahead-forecasting, we can improve the baseline of 1.539 by 12% to a MAE of 1.349 using a transfer learning approach with shared common layers. In addition, personalisation leads to fairer models at group-level. Discussion Our results suggest that personalisation using subject-dependent standardisation and transfer learning can improve predictions and forecasts, respectively, of depressive symptoms in participants of a digital depression intervention. We discuss technical and clinical limitations of this approach, avenues for future investigations, and how personalised machine learning architectures may be implemented to improve existing digital interventions for depression

    Multivariate moments expansion density: application of the dynamic equicorrelation model

    Get PDF
    In this study, we propose a new semi-nonparametric (SNP) density model for describing the density of portfolio returns. This distribution, which we refer to as the multivariate moments expansion (MME), admits any non-Gaussian (multivariate) distribution as its basis because it is specified directly in terms of the basis density’s moments. To obtain the expansion of the Gaussian density, the MME is a reformulation of the multivariate Gram-Charlier (MGC), but the MME is much simpler and tractable than the MGC when positive transformations are used to produce well-defined densities. As an empirical application, we extend the dynamic conditional equicorrelation (DECO) model to an SNP framework using the MME. The resulting model is parameterized in a feasible manner to admit two-stage consistent estimation and it represents the DECO as well as the salient non-Gaussian features of portfolio return distributions. The in- and out-of-sample performance of a MME-DECO model of a portfolio of 10 assets demonstrate that it can be a useful tool for risk management purposes

    Pure higher-order effects in the portfolio choice model

    Get PDF
    This paper examines the effects of higher-order risk attitudes and statistical moments on the optimal allocation of risky assets within the standard portfolio choice model. We derive the expressions for the optimal proportion of wealth invested in the risky asset to show they are functions of portfolio returns third- and fourth-order moments as well as on the investor’s risk preferences of prudence and temperance. We illustrate the relative importance that the introduction of those higher-order effects have in the decision of expected utility maximizers using data for the US

    The Effects of Social Presence on Adherence-Focused Guidance in Problematic Cannabis Users: Protocol for the CANreduce 2.0 Randomized Controlled Trial

    Get PDF
    Background: In European countries, including Switzerland, cannabis is the most commonly used illicit drug. Offering a Web-based self-help tool could potentially reach users who otherwise would not seek traditional help. However, such Web-based self-help tools often suffer from low adherence. Objective: Through adherence-focused guidance enhancements, the aim of this study was to increase adherence in cannabis users entering a Web-based self-help tool to reduce their cannabis use and, in this way, augment its effectiveness. Methods: This paper presents the protocol for a three-arm randomized controlled trial (RCT) to compare the effectiveness of (1) an adherence-focused, guidance-enhanced, Web-based self-help intervention with social presence; (2) an adherence-focused, guidance-enhanced, Web-based self-help intervention without social presence; and (3) a treatment-as-usual at reducing cannabis use in problematic users. The two active interventions, each spanning 6 weeks, consist of modules designed to reduce cannabis use and attenuate common mental disorder (CMD) symptoms, including depression, anxiety, and stress-related disorder symptoms based on the approaches of motivational interviewing and cognitive behavioral therapy. With a target sample size of 528, data will be collected at baseline, 6 weeks, and 3 months after baseline. The primary outcome measurement will be the number of days of cannabis use on the preceding 7 days. Secondary outcomes will include the quantity of cannabis used in standardized cannabis joints, the severity of cannabis dependence, changes in CMD symptoms, and adherence to the program. Data analysis will follow the intention-to-treat principle and employ (generalized) linear mixed models. Results: The project commenced in August 2016; recruitment is anticipated to end by December 2018. First results are expected to be submitted for publication in summer 2019. Conclusions: This study will provide detailed insights on if and how the effectiveness of a Web-based self-help intervention aiming to reduce cannabis use in frequent cannabis users can be improved by theory-driven, adherence-focused guidance enhancement

    The Effects of Social Presence on Adherence-Focused Guidance in Problematic Cannabis Users: Protocol for the CANreduce 2.0 Randomized Controlled Trial

    Get PDF
    Background: In European countries, including Switzerland, cannabis is the most commonly used illicit drug. Offering a Web-based self-help tool could potentially reach users who otherwise would not seek traditional help. However, such Web-based self-help tools often suffer from low adherence. Objective: Through adherence-focused guidance enhancements, the aim of this study was to increase adherence in cannabis users entering a Web-based self-help tool to reduce their cannabis use and, in this way, augment its effectiveness. Methods: This paper presents the protocol for a three-arm randomized controlled trial (RCT) to compare the effectiveness of (1) an adherence-focused, guidance-enhanced, Web-based self-help intervention with social presence; (2) an adherence-focused, guidance-enhanced, Web-based self-help intervention without social presence; and (3) a treatment-as-usual at reducing cannabis use in problematic users. The two active interventions, each spanning 6 weeks, consist of modules designed to reduce cannabis use and attenuate common mental disorder (CMD) symptoms, including depression, anxiety, and stress-related disorder symptoms based on the approaches of motivational interviewing and cognitive behavioral therapy. With a target sample size of 528, data will be collected at baseline, 6 weeks, and 3 months after baseline. The primary outcome measurement will be the number of days of cannabis use on the preceding 7 days. Secondary outcomes will include the quantity of cannabis used in standardized cannabis joints, the severity of cannabis dependence, changes in CMD symptoms, and adherence to the program. Data analysis will follow the intention-to-treat principle and employ (generalized) linear mixed models. Results: The project commenced in August 2016; recruitment is anticipated to end by December 2018. First results are expected to be submitted for publication in summer 2019. Conclusions: This study will provide detailed insights on if and how the effectiveness of a Web-based self-help intervention aiming to reduce cannabis use in frequent cannabis users can be improved by theory-driven, adherence-focused guidance enhancement

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde
    corecore