43 research outputs found

    Modelling and upscaling of transport in carbonates during dissolution: validation and calibration with NMR experiments

    Get PDF
    We present an experimental and numerical study of transport in carbonates during dissolution and its upscaling from the pore (āˆ¼ Ī¼m) to core (āˆ¼ cm) scale. For the experimental part, we use nuclear magnetic resonance (NMR) to probe molecular displacements (propagators) of an aqueous hydrochloric acid (HCl) solution through a Ketton limestone core. A series of propagator profiles are obtained at a large number of spatial points along the core at multiple time-steps during dissolution. For the numerical part, first, the transport modelā€”a particle-tracking method based on Continuous Time Random Walks (CTRW) by Rhodes et al. (2008)ā€”is validated at the pore scale by matching to the NMR-measured propagators in a beadpack, Bentheimer sandstone, and Portland carbonate Scheven et al. (2005). It was found that the emerging distribution of particle transit times in these samples can be approximated satisfactorily using the power law function Ļˆ(t) āˆ¼ t āˆ’1 āˆ’Ī², where 0 < Ī² < 2. Next, the evolution of the propagators during reaction is modelled: at the pore scale, the experimental data is used to calibrate the CTRW parameters; then the shape of the propagators is predicted at later observation times. Finally, a numerical upscaling technique is employed to obtain CTRW parameters for the core. From the NMR-measured propagators, an increasing frequency of displacements in stagnant regions was apparent as the reaction progressed. The present model predicts that non-Fickian behaviour exhibited at the pore scale persists on the centimetre scale

    Generalized Cross-Validation as a Method of Hyperparameter Search for MTGV Regularization

    Full text link
    The concept of generalized cross-validation (GCV) is applied to modified total generalized variation (MTGV) regularization. Current implementations of the MTGV regularization rely on manual (or semi-manual) hyperparameter optimization, which is both time-consuming and subject to bias. The combination of MTGV-regularization and GCV allows for a straightforward hyperparameter search during regularization. This significantly increases the efficiency of the MTGV-method, because it limits the number of hyperparameters, which have to be tested and, improves the practicality of MTGV regularization as a standard technique for inversion of NMR signals. The combined method is applied to simulated and experimental NMR data and the resulting reconstructed distributions are presented. It is shown that for all data sets studied the proposed combination of MTGV and GCV minimizes the GCV score allowing an optimal hyperparameter choice

    Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    Get PDF
    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.Carmine Dā€™Agostino would like to acknowledge Wolfson College, Cambridge, for supporting his re search activities. The authors would also like to thank Salahaddin University (EIA) and the University of Kufa (AYMA) for funding studentships.This is the author accepted manuscript. The final version is available from RSC at http://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C5CP01493J#!divAbstract

    Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements

    Get PDF
    Catalytic reaction studies and Nuclear Magnetic Resonance (NMR) relaxation time measurements have been compared to study the influence of competitive adsorption of reactant and solvent on catalytic conversion. The reaction chosen is the aerobic catalytic oxidation of 1,4-butanediol in methanol over different supported-metal catalysts. From the NMR T1/T2 ratio, where T1 is the longitudinal and T2 the transverse spin relaxation time, the relative affinity of reactant and solvent for different catalytic surfaces is determined. The catalysts with the lowest activity show a preferential surface affinity for the solvent compared to the reactant. Conversely, the catalyst with the highest activity shows a preferential surface affinity for the reactant compared to the solvent. Significantly, Ru/SiO2, which is totally inactive for the oxidation of 1,4-butanediol, exhibited a lower T1/T2 ratio (surface affinity) for 1,4-butanediol (reactant) than for a ā€œweakly-interactingā€ alkane, indicating a very poor surface affinity for the diol functionality. The results provide direct evidence of the importance of the adsorbate-adsorbent interactions on catalyst activity in liquid-phase oxidations and indicate that the competitive adsorption of the solvent plays an important role in these reactions. This work demonstrates that NMR relaxation time analysis is a powerful method for comparing adsorption of liquids in porous catalysts, providing valuable information on the affinity of different chemical species for a catalyst surface. Moreover, the results demonstrate that NMR relaxation time measurements can be used not only to guide selection of solvent for use with a specific catalyst, but also selection of the catalyst itself. The results suggest that this method may be used to predict catalyst behaviour, enabling improved design and optimisation of heterogeneous catalytic processes

    Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study.

    Get PDF
    Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at āˆ¼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.The authors would like to acknowledge CASTech (EPSRC grant EP/G011397/1), RCUK Basic Technology Grant (EP/E048811/1), STFC for beamtime allocation (RB910286) and Jon Mitchell (Cambridge) for valuable discussions.This is the final version of the article. It was first available from RSC via http://dx.doi.org/10.1039/C5CP01132

    Bulk and Confined Benzene-Cyclohexane Mixtures Studied by an Integrated Total Neutron Scattering and NMR Method

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: accepted 2021-04-10, registration 2021-04-10, pub-electronic 2021-04-23, online 2021-04-23, pub-print 2021-08Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): N008995, N009304Abstract: Herein mixtures of cyclohexane and benzene have been investigated in both the bulk liquid phase and when confined in MCM-41 mesopores. The bulk mixtures have been studied using total neutron scattering (TNS), and the confined mixtures have been studied by a new flow-utilising, integrated TNS and NMR system (Flow NeuNMR), all systems have been analysed using empirical potential structure refinement (EPSR). The Flow NeuNMR setup provided precise time-resolved chemical sample composition through NMR, overcoming the difficulties of ensuring compositional consistency for computational simulation of data ordinarily found in TNS experiments of changing chemical compositionā€”such as chemical reactions. Unique to the liquid mixtures, perpendicularly oriented benzene molecules have been found at short distances from the cyclohexane rings in the regions perpendicular to the carbonā€“carbon bonds. Upon confinement of the hydrocarbon mixtures, a stronger parallel orientational preference of unlike molecular dimers, at short distances, has been found. At longer first coordination shell distances, the like benzene molecular spatial organisation within the mixture has also found to be altered upon confinement
    corecore