369 research outputs found
Microstructural and tribological comparison of HVOF-sprayed and post-treated M-Mo-Cr-Si (M = Co, Ni) alloy coatings
High velocity oxygen-fuel (HVOF)-sprayed wear resistant Co-28%Mo-17%Cr-3%Si and Ni-32%Mo-15%Cr-3%Si coatings, both as-sprayed and after heat treatments at 600 degrees C for 1 h, have been studied. Particularly, their dry sliding wear behaviour has been compared by ball-on-disk tests against different counterbodies (100Cr6 steel and sintered alumina), and differences were discussed based on microstructural characteristics and micromechanical properties (Vickers microindentation and scratch test responses). As-sprayed coatings contain oxide stringers, are mostly amorphous and display rather low Vickers microhardness (about 7.4 GPa for the Co-based and 6.2 GPa for the Ni-based), toughness and elastic modulus. Heat-treated ones display sub-micrometric crystalline intermetallics, improving hardness (9.6 GPa and 7.4 GPa, respectively) and elastic modulus. Scratch tests indicate greater brittleness of the Ni-based alloy (higher tendency to cracking). Due to low hardness and toughness, both as-sprayed coatings undergo wear loss against steel and alumina counterparts. The more plastic Co-based alloy undergoes higher adhesive wear against steel and lower abrasive wear against alumina; the situation is reversed for the Ni-based alloy. After heat treatment, the wear loss against steel is very low for both coatings; abrasive wear still occurs against alumina. (c) 2007 Elsevier B.V. All rights reserved
Aberrant brain network connectivity in pre-symptomatic and manifest Huntington's disease: a systematic review
Resting-state functional magnetic resonance imaging (rs-fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic review of the literature was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs-fMRI. We included studies investigating connectivity in pre-symptomatic (pre-HD) and manifest HD gene carriers compared to healthy controls, implementing seed-based connectivity, independent component analysis, regional property and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre-HD, showing disease stage-dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior-posterior alterations, reflecting possible compensatory mechanisms. The involvement of these networks in pre-HD is still unclear. In conclusion, aberrant connectivity of the sensory-motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory-motor and executive networks exhibit hyper- and hypo-connectivity patterns following different spatiotemporal trajectories. These findings could help to implement future huntingtin-lowering interventions
Role of imaging in rare COVID-19 vaccine multiorgan complications
As of September 18th, 2021, global casualties due to COVID-19 infections approach 200 million, several COVID-19 vaccines have been authorized to prevent COVID-19 infection and help mitigate the spread of the virus. Despite the vast majority having safely received vaccination against SARS-COV-2, the rare complications following COVID-19 vaccination have often been life-threatening or fatal. The mechanisms underlying (multi) organ complications are associated with COVID-19, either through direct viral damage or from host immune response (i.e., cytokine storm). The purpose of this manuscript is to review the role of imaging in identifying and elucidating multiorgan complications following SARS-COV-2 vaccination—making clear that, in any case, they represent a minute fraction of those in the general population who have been vaccinated. The authors are both staunch supporters of COVID-19 vaccination and vaccinated themselves as well
Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease A Systematic Review and Meta-analysis
IMPORTANCE: The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown.OBJECTIVE: To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain.DATA SOURCES: PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021.STUDY SELECTION: Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included.DATA EXTRACTION AND SYNTHESIS: This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.MAIN OUTCOMES AND MEASURES: Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death.RESULTS: A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%.CONCLUSION AND RELEVANCE: In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years
Water and Us: tales and hands-on laboratories to educate about sustainable and nonconflictual water resources management
Climate change and water security are among the grand challenges of the 21st century, but literacy on these matters among high-school students is often unsystematic and/or detached from the real world. This study aims to introduce the educational objectives, methods, and early results of “Water and Us”, a three-module initiative that can contribute to advancing water education in a warming climate by focusing on the natural and anthropogenic water cycle, climate change, and emerging water conflicts. The method of Water and Us revolves around storytelling to aid understanding and generate new knowledge, learning by doing, a flipped-classroom environment, and a constant link to examples from the real world (such as ongoing droughts across the world or seeds of conflict regarding transnational river basins). Water and Us was established in 2021–2022 and, during that school year, involved ≥200 students as part of a proof of concept to test the complete didactic approach using small-scale experiments. Results from ≥40 h of proof-of-concept events confirmed the effectiveness of this approach with respect to conveying the essential elements of the natural and anthropogenic water cycle, the most commonly recurring concepts related to climate change and water as well as the possible conflicts and solutions related to water scarcity in a warming climate. The Water and Us team remains interested in networking with colleagues and potential recipients to upscale and further develop this work.</p
Omics analysis of educated platelets in cancer and benign disease of the pancreas
Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocy-tosis/hypercoagulation and novel insights on platelet-PDAC “dangerous liaisons” are warranted. Here we performed an integrative omics study investigating the biological processes of mRNAs and expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a refer-ence for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts. Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs involved in cancer signaling, suggesting a specific ”education” in PDAC platelets. Platelets of benign patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC presented length variation on 3′ (lv3p) as the most frequent modification on miRNAs. Additionally, we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future studies. In conclusion, our data show that platelets change their biological repertoire in patients with PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo protein machinery that can “educate” the platelet. These novel findings could be further exploited for innovative liquid biopsies platforms as well as possible therapeutic targets
Prediction of rehabilitation induced motor recovery after stroke using a multi-dimensional and multi-modal approach
Background: Stroke is a debilitating disease affecting millions of people worldwide. Despite the survival rate has significantly increased over the years, many stroke survivors are left with severe impairments impacting their quality of life. Rehabilitation programs have proved to be successful in improving the recovery process. However, a reliable model of sensorimotor recovery and a clear identification of predictive markers of rehabilitation-induced recovery are still needed. This article introduces the cross-modality protocols designed to investigate the rehabilitation treatment’s effect in a group of stroke survivors. Methods/design: A total of 75 stroke patients, admitted at the IRCCS San Camillo rehabilitation Hospital in Venice (Italy), will be included in this study. Here, we describe the rehabilitation programs, clinical, neuropsychological, and physiological/imaging [including electroencephalography (EEG), transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) techniques] protocols set up for this study. Blood collection for the characterization of predictive biological biomarkers will also be taken. Measures derived from data acquired will be used as candidate predictors of motor recovery. Discussion/summary: The integration of cutting-edge physiological and imaging techniques, with clinical and cognitive assessment, dose of rehabilitation and biological variables will provide a unique opportunity to define a predictive model of recovery in stroke patients. Taken together, the data acquired in this project will help to define a model of rehabilitation induced sensorimotor recovery, with the final aim of developing personalized treatments promoting the greatest chance of recovery of the compromised functions
Effectiveness of abiraterone acetate plus prednisone in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer in a large prospective real-world cohort: the ABItude study
Background: Real-world data on chemotherapy-naïve patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone plus prednisone are limited, largely deriving from small retrospective studies. Methods: ABitude is an Italian, observational, prospective, multicenter study of mCRPC patients receiving abiraterone plus prednisone in clinical practice. Chemotherapy-naïve mCRPC patients were consecutively enrolled at abiraterone start (February 2016 to June 2017) and are being followed for 3 years, with evaluation approximately every 6 months. Several clinical and patients reported outcomes were examined. Results: In this second interim analysis, among 481 enrolled patients, 453 were evaluable for analyses. At baseline, the median age was 77 years and ~69% of patients had comorbidities (mainly cardiovascular diseases). Metastases were located mainly at bones and lymph nodes; 8.4% of patients had visceral metastases. During a median follow-up of 18 months, 1- and 2-year probability of radiographic progression-free survival were 73.9% and 56.2%, respectively; the corresponding rates for overall survival were 87.3% and 70.4%. In multivariable analyses, the number of bone metastases significantly affected radiographic progression-free survival and overall survival. During abiraterone plus prednisone treatment, 65% of patients had a ⩾50% prostate-specific antigen decline, and quality of life remained appreciably high. Among symptomatic patients according to the Brief Pain Inventory) (32%), scores significantly declined after 6 months of treatment. Overall, eight patients (1.7%) had serious adverse reactions to abiraterone. Conclusions: Abiraterone plus prednisone is effective and safe for chemotherapy-naïve mCRPC patients in clinical practice
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
A simpler method of preprocessing MALDI-TOF MS data for differential biomarker analysis: stem cell and melanoma cancer studies
<p>Abstract</p> <p>Introduction</p> <p>Raw spectral data from matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) with MS profiling techniques usually contains complex information not readily providing biological insight into disease. The association of identified features within raw data to a known peptide is extremely difficult. Data preprocessing to remove uncertainty characteristics in the data is normally required before performing any further analysis. This study proposes an alternative yet simple solution to preprocess raw MALDI-TOF-MS data for identification of candidate marker ions. Two in-house MALDI-TOF-MS data sets from two different sample sources (melanoma serum and cord blood plasma) are used in our study.</p> <p>Method</p> <p>Raw MS spectral profiles were preprocessed using the proposed approach to identify peak regions in the spectra. The preprocessed data was then analysed using bespoke machine learning algorithms for data reduction and ion selection. Using the selected ions, an ANN-based predictive model was constructed to examine the predictive power of these ions for classification.</p> <p>Results</p> <p>Our model identified 10 candidate marker ions for both data sets. These ion panels achieved over 90% classification accuracy on blind validation data. Receiver operating characteristics analysis was performed and the area under the curve for melanoma and cord blood classifiers was 0.991 and 0.986, respectively.</p> <p>Conclusion</p> <p>The results suggest that our data preprocessing technique removes unwanted characteristics of the raw data, while preserving the predictive components of the data. Ion identification analysis can be carried out using MALDI-TOF-MS data with the proposed data preprocessing technique coupled with bespoke algorithms for data reduction and ion selection.</p
- …