652 research outputs found
Have Cherenkov telescopes detected a new light boson?
Recent observations by H.E.S.S. and MAGIC strongly suggest that the Universe
is more transparent to very-high-energy gamma rays than previously thought. We
show that this fact can be reconciled with standard blazar emission models
provided that photon oscillations into a very light Axion-Like Particle occur
in extragalactic magnetic fields. A quantitative estimate of this effect indeed
explains the observed data and in particular the spectrum of blazar 3C279.Comment: 3 pages, 1 figure, Proceeding of the "Eleventh International Workshop
on Topics in Astroparticle and Underground Physics" (TAUP), Roma, Italy, 1 -
5 July 2009 (to be published in the Proceedings
The MAGIC Experiment and Its First Results
With its diameter of 17m, the MAGIC telescope is the largest Cherenkov
detector for gamma ray astrophysics. It is sensitive to photons above an energy
of 30 GeV. MAGIC started operations in October 2003 and is currently taking
data. This report summarizes its main characteristics, its rst results and its
potential for physics.Comment: 6 pages, 3 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
Effects of neoadjuvant trastuzumab, pertuzumab and palbociclib on Ki67 in HER2 and ER-positive breast cancer
The crosstalk between estrogen and HER2 receptors and cell-cycle regulation sustains resistance to endocrine therapy of HER2- and hormone receptor-positive breast cancer. We earlier reported that women with HER2 and ER-positive breast cancer receiving neoadjuvant dual HER2-block and palbociclib in the NA-PHER2 trial had Ki67 decrease and 27% pathological complete responses (pCR). We extended NA-PHER2 to Cohort B using dual HER2-block and palbociclib without fulvestrant and report here Ki67 drops at week-2 (mean change 1225.7), at surgery (after 16 weeks, mean change 129.5), high objective response (88.5%) and pCR (19.2%). In Cohort C [Ki67 > 20% and HER2low (IHC 1+/2+ without gene amplification)], women also received fulvestrant, had dramatic Ki67 drop at week 2 ( 1229.5) persisting at surgery ( 1219.3), and objective responses in 78.3%. In view of the favorable tolerability and of the efficacy-predictive value of Ki67 drop at week-2, the chemotherapy-free approach of NA-PHER2 deserves further investigation in HER2 and ER-positive breast cancer. The trial is registered with ClinicalTrials.gov, number NCT02530424
External Fields as a Probe for Fundamental Physics
Quantum vacuum experiments are becoming a flexible tool for investigating
fundamental physics. They are particularly powerful for searching for new light
but weakly interacting degrees of freedom and are thus complementary to
accelerator-driven experiments. I review recent developments in this field,
focusing on optical experiments in strong electromagnetic fields. In order to
characterize potential optical signatures, I discuss various low-energy
effective actions which parameterize the interaction of particle-physics
candidates with optical photons and external electromagnetic fields.
Experiments with an electromagnetized quantum vacuum and optical probes do not
only have the potential to collect evidence for new physics, but
special-purpose setups can also distinguish between different particle-physics
scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
Dark Matter Candidates: A Ten-Point Test
An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been
proposed over the last three decades. Here we present a 10-point test that a
new particle has to pass, in order to be considered a viable DM candidate: I.)
Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it
neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution
unchanged? VI.) Is it compatible with constraints on self-interactions? VII.)
Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with
gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds?
X.) Can it be probed experimentally?Comment: 29 pages, 12 figure
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
Discovery of Very High Energy -Rays from Markarian~180 Triggered by an Optical Outburst
The high-frequency-peaked BL Lacertae object Markarian~180 (Mrk~180) was
observed to have an optical outburst in 2006 March, triggering a Target of
Opportunity observation with the MAGIC telescope. The source was observed for
12.4 hr and very high energy -ray emission was detected with a
significance of 5.5 . An integral flux above 200 GeV of
was measured, corresponding to
11% of the Crab Nebula flux. A rather soft spectrum with a photon index of
has been determined. No significant flux variation was found.Comment: Accepted by ApJ Letters, minor revision
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
- …