13 research outputs found

    Chiral currents in gold nanotubes

    Get PDF
    Results are presented for the electron current in gold chiral nanotubes (AuNTs). Starting from the band structure of (4,3) and (5,3) AuNTs, we find that the magnitude of the chiral currents are greater than those found in carbon nanotubes. We also calculate the associated magnetic flux inside the tubes and find this to be higher than the case of carbon nanotubes. Although (4,3) and (5,3) AuNTs carry transverse momenta of similar magnitudes, the low-bias magnetic flux carried by the former is far greater than that carried by the latter. This arises because the low-bias longitudinal current carried by a (4,3) AuNT is significantly smaller than that of a (5,3) AuNT.Comment: 5 pages, 6 figure

    Quantum Interference in Single Molecule Electronic Systems

    Get PDF
    We present a general analytical formula and an ab initio study of quantum interference in multi-branch molecules. Ab initio calculations are used to investigate quantum interference in a benzene-1,2-dithiolate (BDT) molecule sandwiched between gold electrodes and through oligoynes of various lengths. We show that when a point charge is located in the plane of a BDT molecule and its position varied, the electrical conductance exhibits a clear interference effect, whereas when the charge approaches a BDT molecule along a line normal to the plane of the molecule and passing through the centre of the phenyl ring, interference effects are negligible. In the case of olygoynes, quantum interference leads to the appearance of a critical energy EcE_c, at which the electron transmission coefficient T(E)T(E) of chains with even or odd numbers of atoms is independent of length. To illustrate the underlying physics, we derive a general analytical formula for electron transport through multi-branch structures and demonstrate the versatility of the formula by comparing it with the above ab-initio simulations. We also employ the analytical formula to investigate the current inside the molecule and demonstrate that large counter currents can occur within a ring-like molecule such as BDT, when the point charge is located in the plane of the molecule. The formula can be used to describe quantum interference and Fano resonances in structures with branches containing arbitrary elastic scattering regions connected to nodal sites.Comment: 12 pages, 11 figure

    GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    Get PDF
    We have developed an efficient simulation tool 'GOLLUM' for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as LDA+U and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum-Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects and pulling curves and conductance histograms for mechanically-controlled-break-junction experiments.Comment: 66 journal pages, 57 figure

    Symmetry-induced interference effects in metalloporphyrin wires

    Full text link
    Organo-metallic molecular structures where a single metallic atom is embedded in the organic backbone are ideal systems to study the effect of strong correlations on their electronic structure. In this work we calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched by gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT+U approaches. The zero bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes qualitatively the conductance and spin-filtering behavior in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets

    GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.-- et al.We have developed an efficient simulation tool 'GOLLUM' for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as local density approximation +U (LDA+U) and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects, and pulling curves and conductance histograms for mechanically-controlled break-junction experiments.The research presented here was funded by the Spanish Ministerio de Economía y Competitividad through the grant FIS2012–34858, by UK EPSRC grants EP/K001507/1, EP/J014753/1, EP/H035818/1, and by the European Union Marie-Curie Network ‘MOLESCO’. VMGS thanks the Spanish Ministerio de Economía y Competitividad for a Ramón y Cajal fellowship (RYC-2010–06053). LO has been supported by the Hungarian Scientic Research Fund No. K108676.Peer Reviewe

    Advanced Simulation of Conductance Histograms Validated through Channel-Sensitive Experiments on Indium Nanojunctions

    Get PDF
    We demonstrate a self-contained methodology for predicting conductance histograms of atomic and molecular junctions. Fast classical molecular-dynamics simulations are combined with accurate density functional theory calculations predicting both quantum transport properties and molecular-dynamics force field parameters. The methodology is confronted with experiments on atomic-sized indium nanojunctions. Beside conductance histograms the distribution of individual channel transmission eigenvalues is also determined by fitting the superconducting subgap features in the I-V curves. The remarkable agreement in the evolution of the channel transmissions demonstrates that the simulated ruptures are able to reproduce a realistic statistical ensemble of contact configurations, whereas simulations on selected ideal geometries show strong deviations from the experimental observations

    Graphene sculpturene nanopores for DNA nucleobase sensing

    No full text
    et al.To demonstrate the potential of nanopores in bilayer graphene for DNA sequencing, we computed the current-voltage characteristics of a bilayer graphene junction containing a nanopore and found that they change significantly when nucleobases are transported through the pore. To demonstrate the sensitivity and selectivity of example devices, we computed the probability distribution PX(ß) of the quantity ß representing the change in the logarithmic current through the pore due to the presence of a nucleobase X (X = adenine, thymine, guanine, or cytosine). We quantified the selectivity of the bilayer-graphene nanopores by showing that P X(ß) exhibits distinct peaks for each base X. To demonstrate that such discriminating sensing is a general feature of bilayer nanopores, the well-separated positions of these peaks were shown to be present for different pores, with alternative examples of electrical contacts. © 2014 American Chemical Society.This work was supported by the European Union Marie-Curie Network MOLESCO. Funding was also provided by the UK EPSRC and the Spanish MINECO through Grant FIS2012-34858. V.G.-S. thanks the Spanish Ministerio de Economiá y Competitividad for a Ramón y Cajal fellowship (RYC-2010-06053).Peer Reviewe
    corecore