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We demonstrate a self-contained methodology for predicting conductance histograms of atomic and

molecular junctions. Fast classical molecular-dynamics simulations are combined with accurate density

functional theory calculations predicting both quantum transport properties and molecular-dynamics force

field parameters. The methodology is confronted with experiments on atomic-sized indium nanojunctions.

Beside conductance histograms the distribution of individual channel transmission eigenvalues is also

determined by fitting the superconducting subgap features in the I-V curves. The remarkable agreement in

the evolution of the channel transmissions demonstrates that the simulated ruptures are able to reproduce a

realistic statistical ensemble of contact configurations, whereas simulations on selected ideal geometries

show strong deviations from the experimental observations.
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Nanostructures, in which the current flows through
single atoms or single molecules, are ideal test systems
to demonstrate the behavior of matter at the ultimate
atomic size limit for potential electronic applications.
Experimentally, such tiny structures can be constructed
using various approaches, including break junction tech-
niques, where an atomic-scale junction is created during
the controlled mechanical elongation of a metallic wire
[1,2]. In the most common experiment the evolution of the
conductance is monitored during the repeated opening and
closing of the nanojunction, and the captured conductance-
versus-electrode-separation traces are analyzed by conduc-
tance histograms [1,2]. Peaks in the histogram reflect the
conductance of stable, frequently occurring atomic-scale
junction configurations. To gain more information, con-
ductance histograms can be supplemented by the study of
nonlinear features in the I-V characteristics of the junction
[3,4], noise measurements [5], or more advanced statistical
analysis of the conductance traces [6]. In all these mea-
surements it is a fundamental ingredient to respect the
stochastic nature of nanocontact formation dynamics, and
accordingly to perform experiments on a broad statistical
ensemble of junctions.

To draw a more complete microscopic picture, all these
experimental inputs should be compared with the results of
theoretical calculations. Atomic-sized or molecular nano-
junctions are commonly described by ab initio simulations
based on density functional theory (DFT) [2]. However, the
computational resources of fully DFT-based simulations of
rupture dynamics [7] are highly demanding, therefore
DFT calculations are most commonly restricted to the
study of a small number of selected ideal geometries,
which are chosen to match the presumably most probable

experimental contact configurations [8,9]. To better
describe the stochastic nature of contact formation and to
catch the statistically relevant features, it is desirable to
simulate a large statistical ensemble of contact ruptures.
For this a proper combination of fast classical molecular-
dynamics (MD) simulations [10–12] with precise quantum
mechanical calculations of the conductance may provide a
reasonable compromise. Recently, a detailed analysis of
theoretical conductance histograms was performed, utiliz-
ing simpler tight-binding parametrizations of the under-
lying mean-field Hamiltonian [13,14]. In this case,
molecular-dynamics force fields were calculated using
semiempirical potentials derived from effective medium
theory, whereas tight-binding parameters were obtained
from a different approach by fitting to the band structures
of bulk materials. Such an approach is reasonable,
provided bulk parameters can be transferred to nanojunc-
tions, where many properties are determined by atoms
on surfaces or in other low-symmetry positions. Since
this pioneering work theoretical conductance histograms
were not yet implemented in the field of molecular
electronics.
In what follows, we demonstrate a methodology for

predicting conductance histograms and other statistical
properties, which combines the best features of the above
approaches. A statistical ensemble of contact ruptures is
simulated by classical MD calculations, and afterwards the
underlying mean-field Hamiltonian is evaluated for all the
contact configurations by DFT using the local density
approximation. The calculations are performed by the
SIESTA code [15]. To provide a self-contained method the

force field parameters of the MD simulations are obtained
by fitting to the results of the DFT calculations for some
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model geometries. Finally, the conductance of all the con-
figurations is calculated by a Green’s function based evalu-
ation of the Landauer formula G ¼ ð2e2=hÞPi�i [16,17],
where �i represents the transmission probabilities for the
conductance eigenchannels of the contact.

We validate the methodology by performing a combined
theoretical and experimental analysis of indium nanojunc-
tions, taking advantage of the superconducting phase tran-
sition of In at T ¼ 3:41 K. In the superconducting phase,
multiple Andreev reflections give rise to distinct subgap
features in the I-V characteristics of the nanocontact, from
which all the transmission probabilities of the conductance
eigenchannels of the junction �i can be precisely deter-
mined [18–20]. The experimental insight to the statistical
distribution of the individual channel transmission eigen-
values provides a unique possibility for a strict confronta-
tion of theoretical simulations with reality, going far
beyond the comparison of measured and calculated
single-atom conductances.

The details of the experimental and theoretical methods
are available in the Supplemental Material [21].

Figure 1 demonstrates both experimentally measured
and theoretically simulated conductance traces and histo-
grams. Figures 1(a) and 1(b), respectively, show examples
of experimental conductance traces and the conductance
histogram constructed from 5000 individual traces.
The experimental histogram shows a sharp peak at G �
1:1G0 (G0 ¼ 2e2=h), a smaller peak at G � 1:7G0, and
two broader peaks at G � 2:5G0 and 4G0, respectively.
These peak positions are reproducible for different samples
with some variation of the relative peak amplitudes.
The theoretical histogram in Fig. 1(d) is constructed from
100 independent simulated conductance traces, from
which examples are presented in Fig. 1(c). The simulated
histogram nicely reproduces the first peak of the experi-
mental histogram, and it also shows recognizable peaks
at higher conductances around 2.5 and 4G0, close to the
third and fourth experimental peak. The second experi-
mental peak may be reflected by a shoulder around
G � 1:5 in the simulated histogram. The simulated traces
show clear conductance plateaus, however, in contrast to
the sharp experimental conductance jumps the calculated
traces exhibit smoother transition between the plateaus.
The conductance steps are mainly governed by the delicate
balance of elastic deformation and the change of surface
energy. In our view realistic elastic forces are accurately
simulated, whereas a proper simulation of surface energy is
highly demanding within classical MD simulations.
Therefore, the simulations are expected to be precise
once a stable configuration is established, but the simula-
tion of the jumps between metastable configurations is less
accurate. The agreement with the measured conductance
histogram indicates that the simulations are able to provide
a realistic ensemble of junction configurations, however,
for a stronger justification of this statement a more detailed

confrontation of the experimental and theoretical data is
necessary.
For a deeper comparison of the simulated data with

experimental junction configurations we perform a de-
tailed statistical analysis of the conductance channels’
transmission eigenvalues. Experimentally we have mea-
sured the current-voltage characteristics of more than 500
independent junctions in the superconducting state, and by
fitting the subgap structures we have determined the trans-
mission probabilities �i for the open conductance channels
of all these junctions [21]. The channel transmissions are
also determined along all points of the simulated 100 traces
by diagonalizing tyt, where t is the transmission part of the
scattering matrix.
Experimentally we have found that in spite of the

stochastic nature of contact rupture the evolution of the
average channel transmissions as a function of the total
conductance is material specific, and it is a well-defined
function for a given material. This evolution is demon-
strated in Fig. 2 both for the measurements on In junctions
and for the simulations (orange squares and blue circles,
respectively). A remarkable agreement is found between
theory and experiment, which gives a strong justification
that the simulations provide a realistic ensemble of

FIG. 1 (color online). The top panels show demonstrative
experimental conductance traces (a) and the conductance histo-
gram (b) for indium junctions. The counts are normalized to the
number of traces included. The bottom panels show examples of
simulated conductance traces (c) and a theoretical conductance
histogram (d). Note, that in (a) and (c) the zero point of the
distance scale is arbitrarily chosen as the origin of the horizontal
axis. Below the panels some atomic configurations are demon-
strated (e1)–(e4), respectively, corresponding to the positions on
the simulated traces signed by stars.
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junction configurations. The complete distribution of mea-
sured and calculated transmission eigenvalues is demon-
strated in the Supplemental Material [21].

This agreement allows us to identify the typical atomic
configurations, which are responsible for the different peaks
in the experimental histogram. After a detailed analysis of
the atomic arrangements along the theoretical conductance
traces, we have found a clear matching between the four
distinct conductance regions around the peak positions
[four color areas in Figs. 1(b) and 1(d)] with some typical
contact configurations demonstrated in Figs. 1(e1)–(e4).
The region of the fourth peak (G ¼ 3–5G0, green area) is
typically related to configurations with 3 or 4 atoms in the
smallest cross section [Fig. 1(e1)], which we denote by
N-3-N0 or N-4-N0 configuration (the middle number is the
number of atoms in the smallest cross section, whereas N
and N0 are the number of neighbor atoms on both sides
which can have different values being larger than themiddle
number). The third peak (G ¼ 1:9–3G0, orange area) basi-
cally corresponds to arrangements with 2 atoms in the
smallest cross section [N-2-N0 configuration, Fig. 1(e3)].
The small peak atG � 1:7G0 (G ¼ 1:3–1:9G0, blue area) is
mainly related to a monomer configuration with a single
atom in the smallest cross section [N-1-N0, Fig. 1(e2)].

The position of the first peak (G ¼ 0:5–1:3G0, red area) is
clearly related to a dimer configuration, where a chain
of two atoms connects the two electrodes [N-1-1-N0,
Fig. 1(e4)]. A movie demonstrating the evolution of the
contact configuration along the simulated conductance
traces is available in the Supplemental Material [21].
Until now, most of the DFT-based calculations were

applied to small numbers of selected geometries and there-
fore for comparison, we have performed simulations on
some ideal pyramidlike junctions, which are cleaved
from bulk indium crystal structure without any relaxation.
The solid (red) lines in Fig. 2 demonstrate the opening of
the conductance channels as the distance between the apex
atoms of an ideal {001}-oriented dimer configuration is
varied [the ideal geometry is demonstrated in the inset
of Fig. 2(a)]. At the optimized separation, the conductance
of the ideal dimer configuration is G � 1G0 (red square),
in agreement with the simulated traces [e.g. Fig. 1(e4)].
The transmission probabilities of the first two channels
for this geometry show reasonable agreement with the
experiment, whereas the almost zero transmission of the
third channel is far below the experimental data. As a
second example, the dashed (green) curve shows the open-
ing of the conductance channels for an ideal {001}-
oriented monomer configuration [see inset of Fig. 2(b)].
For this arrangement the conductance at the optimal sepa-
ration is G � 2:5G0 (green circle), which significantly
exceeds the conductance of monomer configurations ob-
tained by MD simulations, and furthermore the evolution
of the channel transmissions strongly deviate from the
experimental mean values. These discrepancies are attrib-
uted to the sensitivity to the number of neighbor atoms,
which is defined to be 2� 4 for the ideal monomer,
whereas in the MD-based traces the middle atom usually
has only 2 or 3 neighbors on each contact. The above
comparisons demonstrate, that at G< 1:1G0 the junctions
are reasonably described by an ideal dimer configuration,
although the transmission probabilities show deviations
from the experiment presumably due to the unrealistic
symmetry of the ideal structure. However, at higher con-
ductances, where the precise geometry of the junction
strongly influences the conductance, ideal configurations
give a false result, and besides the simulations of ideal
geometries are not able to describe transitions between
different configurations. In contrast, MD simulations are
able to sort out the statistically relevant ensemble of con-
figurations, and can provide excellent agreement with the
experimental data even on the level of individual channel
transmissions.
With theoretical simulations not only the transmission

probabilities, but also the scattering wave functions corre-
sponding to the different conductance channels can be
determined. Figures 1(e) and 1(f) show the absolute value
of the wave functions of the first two eigenchannels of an
ideal dimer configuration, associated with an incoming

FIG. 2 (color online). (a)–(d) The orange squares and blue
circles, respectively, show the mean value of the experimental
and theoretical channel transmissions. The solid red (dashed
green) lines, respectively, show the channel transmissions
during the stretching of an ideal dimer (monomer) configura-
tions. The geometries of these ideal configurations are demon-
strated in the insets. Panels (e) and (f) demonstrate the scattering
wave function of the first two eigenchannels in a junction with
an ideal dimer configuration (G ¼ 1:18G0, �1 ¼ 0:985, �2 ¼
0:102). The first channel (e) shows a �-type, whereas the second
channel (f) shows a �-type wave function at the central two
atoms.
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wave from the left electrode. It is clear that the first,
highly transmitting channel is related to a �-type, whereas
the second channel with significantly smaller transmission
is related to a �-type wave function on the central
two atoms. This picture agrees with previous tight-binding
calculations, which have shown that in p metals, the
first channel comes from the hybridization of s and pz

orbitals, whereas the second and third channels are related
to px and py orbitals [22].

It is also interesting to follow the evolution of the
conductance channels along individual conductance
plateaus. Figure 3(b) shows a rather flat conductance
plateau in the region of the first histogram peak. The
channel transmissions were measured at three points on
the conductance plateau (black circles). The total conduc-
tance of these points is constant with an accuracy of
1.5%. In contrast, during stretching the transmission of
the first channel increases with more than 5% towards
unity [as demonstrated by the enhancement of the zero
bias supercurrent in the I-V curves, Fig. 3(a1)–(a3)] and
the transmissions of the further channels decrease. We
have found this type of behavior (i.e., the opening of the
first channel as the junctions is stretched along a straight
plateau) rather typical in indium junctions, which was
frequently observed in theoretical simulations as well
[Fig. 3(c)]. According to the simulations, this behavior
has a geometrical origin; the final stage of the rupture is
frequently associated with a dimer contact tilting towards
the contact axis [Fig. 3(d1)–(d3)]. During this process the
�-type channel is found to have the largest transmission at
the final, most symmetric configuration (dimer parallel
with the axis), whereas the transmission through the
�-type channels is gradually suppressed. For further

illustration, the evolution of the wave functions along
this conductance trace is demonstrated by a video in the
Supplemental Material [21].
In conclusion, we have demonstrated a self-contained

method for the simulation of a statistical ensemble of
junction configurations and conductance histograms. To
obtain a proper compromise between speed and accuracy
we have combined DFT-based calculations of the conduc-
tance with classical MD simulations of the rupture. The
MD force fields were fitted to DFT calculations, which
ensures the self-contained nature of the method, and en-
ables its application for a wide range of materials—includ-
ing multicomponent systems—without a detailed a priori
knowledge of material properties. The simulations were
confronted with experiments on indium nanojunctions.
Experimentally not only were conductance traces and con-
ductance histograms measured, but also a detailed insight
into the distribution of individual channel transmission
eigenvalues was obtained by fitting the subgap structures
in the I-V curves of a statistical amount of superconducting
junctions. The simulations have shown remarkable agree-
ment with experiment even on the level of individual
transmission eigenvalues, demonstrating that the classical
MD simulations are able to produce a realistic ensemble
of junction configurations. However, if the contact rupture
is not simulated by MD, rather the conductance is
calculated along the elongation of some ideal contact
configurations a strong deviation is obtained from the
experimental data. This comparison demonstrates that
ideal structures—which are frequently adopted in simula-
tions—are not realistic representations of experimental
junctions, and a statistical approach is essential for an
accurate identification of typical experimental junction
configurations.
The proposed statistical approach would also

improve the outcome of simulations on single-molecule
junctions and other molecular electronics devices,
where stochasticity is a major experimental difficulty.
The force-field parametrization of multicomponent sys-
tems is not uncommon in MD calculations [23–27],
and DFT level conductance calculations are also
routinely performed on molecular junctions. Utilizing
these experiences our combined approach could indeed
be generalized to systems containing multiple atomic
species.
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FIG. 3 (color online). An experimentally measured conduc-
tance plateau (b) and the I-V curves recorded at three different
points of the plateau (a1)–(a3). The fitted channel transmissions
are given in the insets of panels (a1)–(a3), and demonstrated by
red squares, blue stars, and orange triangles in panel (b) Panel
(c) demonstrates a theoretical conductance trace (top black
curve) together with the evolution of the channels transmissions
(lower three curves, red, orange, and blue, respectively). Panels
(d1)–(d3) demonstrate the junction geometries at the three points
of the theoretical trace marked by stars.
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