32 research outputs found

    A study of decision region receivers for the Sunblazer space experiment

    Get PDF
    Decision region receivers for Sunblazer space experimen

    VCL@FER– baza slika za procjenu kvalitete slike

    Get PDF
    Original scientific paper In this paper we present new image quality database VCL@FER (http://www.vcl.fer.hr/quality/) which consists of four degradation types, 6 levels of each degradation and 23 different images (552 degraded images). It can be used in objective image quality evaluation, as well as to develop and test new image quality measures. Results for six commonly used full reference objective quality measures are compared using newly developed image database, as well as 6 other image databases.VCL@FER baza slika nova je baza slika (http://www.vcl.fer.hr/quality/) koja se sastoji od 4 vrste izobličenja, 6 razina svakog izobličenja i 23 različite slike (ukupno 552 izobličene slike). Baza slika može se koristiti za usporedbu različitih objektivnih mjera kvalitete slike, kao i za razvoj novih objektivnih mjera. Uporabom nove baze te još šest dostupnih baza slika provedena je usporedba šest relevantnih objektivnih mjere kvalitete slike

    Analysis of frame-compatible subsampling structures for efficient 3DTV broadcast

    Get PDF
    The evolution of the television market is led by 3DTV technology, and this tendency can accelerate during the next years according to expert forecasts. However, 3DTV delivery by broadcast networks is not currently developed enough, and acts as a bottleneck for the complete deployment of the technology. Thus, increasing interest is dedicated to ste-reo 3DTV formats compatible with current HDTV video equipment and infrastructure, as they may greatly encourage 3D acceptance. In this paper, different subsampling schemes for HDTV compatible transmission of both progressive and interlaced stereo 3DTV are studied and compared. The frequency characteristics and preserved frequency content of each scheme are analyzed, and a simple interpolation filter is specially designed. Finally, the advantages and disadvantages of the different schemes and filters are evaluated through quality testing on several progressive and interlaced video sequences

    Controlled variations in stimulus similarity during learning determine visual discrimination capacity in freely moving mice

    Get PDF
    The mouse is receiving growing interest as a model organism for studying visual perception. However, little is known about how discrimination and learning interact to produce visual conditioned responses. Here, we adapted a two-alternative forced-choice visual discrimination task for mice and examined how training with equiprobable stimuli of varying similarity influenced conditioned response and discrimination performance as a function of learning. Our results indicate that the slope of the gradients in similarity during training determined the learning rate, the maximum performance and the threshold for successful discrimination. Moreover, the learning process obeyed an inverse relationship between discrimination performance and discriminative resolution, implying that sensitivity within a similarity range cannot be improved without sacrificing performance in another. Our study demonstrates how the interplay between discrimination and learning controls visual discrimination capacity and introduces a new training protocol with quantitative measures to study perceptual learning and visually-guided behavior in freely moving mice

    An Engineered Minimal-Set Stimulus for Periodic Information Leakage Fault Detection on a RISC-V Microprocessor

    No full text
    Recent evaluations of counter-based periodic testing strategies for fault detection in Microprocessor (μP) have shown that only a small set of counters is needed to provide complete coverage of severe faults. Severe faults are defined as faults that leak sensitive information, e.g., an encryption key on the output of a serial port. Alternatively, fault detection can be accomplished by executing instructions that periodically test the control and functional units of the μP. In this paper, we propose a fault detection method that utilizes an ’engineered’ executable program combined with a small set of strategically placed counters in pursuit of a hardware Periodic Built-In-Self-Test (PBIST). We analyze two distinct methods for generating such a binary; the first uses an Automatic Test Generation Pattern (ATPG)-based methodology, and the second uses a process whereby existing counter-based node-monitoring infrastructure is utilized. We show that complete fault coverage of all leakage faults is possible using relatively small binaries with low latency to fault detection and by utilizing only a few strategically placed counters in the μP

    Research about Quality Estimation Method of Digitial Camera

    No full text

    Node Monitoring as a Fault Detection Countermeasure against Information Leakage within a RISC-V Microprocessor

    No full text
    Advanced, superscalar microprocessors (μP) are highly susceptible to wear-out failures because of their highly complex, densely packed circuit structure and extreme operational frequencies. Although many types of fault detection and mitigation strategies have been proposed, none have addressed the specific problem of detecting faults that lead to information leakage events on I/O channels of the μP. Information leakage can be defined very generally as any type of output that the executing program did not intend to produce. In this work, we restrict this definition to output that represents a security concern, and in particular, to the leakage of plaintext or encryption keys, and propose a counter-based countermeasure to detect faults that cause this type of leakage event. Fault injection (FI) experiments are carried out on two RISC-V microprocessors emulated as soft cores on a Xilinx multi-processor System-on-chip (MPSoC) FPGA. The μP designs are instrumented with a set of counters that records the number of transitions that occur on internal nodes. The transition counts are collected from all internal nodes under both fault-free and faulty conditions, and are analyzed to determine which counters provide the highest fault coverage and lowest latency for detecting leakage faults. We show that complete coverage of all leakage faults is possible using only a single counter strategically placed within the branch compare logic of the μPs

    Fidelity of Graphics Reconstructions: A Psychophysical Investigation

    No full text
    corecore