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Controlled variations in stimulus similarity
during learning determine visual
discrimination capacity in freely moving
mice
Mario Treviño1, Tatiana Oviedo1, Patrick Jendritza1, Shi-Bin Li1, Georg Köhr1 & Rodrigo J. De Marco2

1Department of Molecular Neurobiology Max-Planck-Institute for Medical Research, Heidelberg, Germany, 2Developmental
Genetics of Nervous System Max-Planck-Institute for Medical Research, Heidelberg, Germany.

The mouse is receiving growing interest as a model organism for studying visual perception. However, little
is known about how discrimination and learning interact to produce visual conditioned responses. Here, we
adapted a two-alternative forced-choice visual discrimination task for mice and examined how training with
equiprobable stimuli of varying similarity influenced conditioned response and discrimination
performance as a function of learning. Our results indicate that the slope of the gradients in similarity
during training determined the learning rate, the maximum performance and the threshold for successful
discrimination. Moreover, the learning process obeyed an inverse relationship between discrimination
performance and discriminative resolution, implying that sensitivity within a similarity range cannot be
improved without sacrificing performance in another. Our study demonstrates how the interplay between
discrimination and learning controls visual discrimination capacity and introduces a new training protocol
with quantitative measures to study perceptual learning and visually-guided behavior in freely moving mice.

P
sychophysics and recordings of neuronal activity have long been used to study vision in monkeys, cats and
humans. More recently, it has been shown that rodent visual circuits bear many similarities to those in these
species. For instance, neurons in the mouse primary visual cortex have highly tuned receptive fields1,2, and

mice can discriminate simple3,4 and complex5 shapes. Thus, the mouse is currently emerging as an important and
practical model system for studying the neuronal circuitry underlying visual discrimination, perceptual learning
and decision-making6.

In the mouse, however, visual discrimination can only be studied through learning, and learning, in turn,
improves discrimination performance3,4. Little consideration has been given to the question of how the interplay
between visual discrimination and learning influences the development of discrimination capacity and condi-
tioned response in freely moving mice. Experience-dependent improvements in discrimination performance
have been reported in most, if not all, auditory7, visual8,9 and olfactory10 tasks. When a conditioned stimulus (CS1)
is held constant, the learning rate increases with the discriminative value of the CS1, thereby making stimulus
discriminability a powerful determinant of how perceptual learning transfers between analogous visual stimuli8,11.
However, the relationship between varying stimulus discriminability and learning remains poorly understood.
This is highly relevant because open environments vary continuously and allow locomotion, which modifies the
structure of sensory arrays12, and little is known about how learning and discrimination deal with such variability.
We reasoned that, if the discriminability of a reinforced stimulus varies continuously during learning, then the
sign and slope of such stimulus variations should determine the learning rate and shift the discrimination
threshold.

To study the interplay between visual discrimination and learning, we adapted a two-alternative forced-choice
visual discrimination task3,4 and examined how positive, negative and oscillating gradients of stimulus similarity
correlated with conditioned response and discrimination performance as a function of learning. During training,
we presented the mice with a fixed reinforced image (i.e. conditioned stimulus, CS1) and multiple non-reinforced
images (CS2) with different degrees of structural similarity to the CS1, measured by using parametric descriptions
derived from image quality metrics. This allowed us to arrange equiprobable CS2 stimuli into different train-
ing configurations of variable similarity. Introducing novel measures that allow the detection of successful
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discrimination of complex images, we found that the difficulty of
comparable training conditions shaped the development of a well-
defined visual conditioned response in freely moving mice3,4. Our
results reveal the rules that govern the interplay between discrimina-
tion and learning.

Results
Heterogeneous visual stimuli and discrimination task. Learning is
inferred from the relationships between the discriminative stimuli to
be learned (input) and the ensuing learned response (output). In a
simple two-alternative discrimination task (Fig. 1A, B), a subject has
to make a decision between two hypotheses (one of which leads to
reward) in the presence of some degree of uncertainty13,14. Decision
confidence increases with the degree of discriminability of the
conditioned stimulus (CS1;10,15–19). To investigate the effect of
varying CS1 discriminability on visual discrimination performance
and conditioned response, we generated a set of visual stimuli with

different degrees of structural similarity among them. We created
300 black-and-white, equiluminant, low-pass filtered, heterogeneous
images with different irregularities in shape (see examples in Fig. 1A;
see also Methods). To estimate the relative structure of the images, we
applied parametric descriptions from image quality metrics (see
Methods), and made cross-comparisons between all combinations
of image pairs (Fig. 1D). The structural similarity index (SSIM20), for
example, compares local patterns of pixel intensities, already
normalized for luminance and contrast. We then selected an image
to be used as a CS1 (filled symbol in Fig. 1E), with similarities with
respect to the remaining non-rewarded CS2 images ranging from
20.07 to 1 (average SSIM 5 0.33 6 0.01, n 5 300; hereafter referred
to as ‘wide’ similarity range). Moreover, to implement an additional
training regime covering a narrower similarity range and smaller
average similarity, we created 1112 hybrid images using linear
combinations of the above stimuli, before selecting a second set of
300 new images with narrower range in similarity (0.04 # SSIM #

0.39) and smaller average similarity (average SSIM 5 0.23 6 0.01;

Figure 1 | Visual discrimination task and training paradigm with heterogeneous stimulus similarity. (A) Sample CS1 with exchangeable CS2 stimuli

for discriminative trials. The difficulty in discrimination depends on the degree of structural similarity (SSIM) between stimuli, indicated on the top.

(B) Scheme of the visual discrimination swimming task: two monitors facing the ends of the arms of a Y-maze simultaneously display the positive (CS1,

reinforced) and a negative (CS2, non-reinforced) stimuli (100% contrast). A submerged transparent platform below the CS1 serves as the unconditioned

stimulus (US). The position of both the platform and CS1 in either arm varies pseudo-randomly over consecutive trials. During training, mice are

released into the pool from a release chute and they learn to swim towards the CS1 (correct choice) in order to reach the platform and escape from the

water. (C) Flowchart of a ‘training unit’ where the mice are presented with a given pair of CS1/CS2, a presentation that can be repeated up to 5 times if the

mouse makes incorrect choices. (D) Color matrices showing similarity comparisons across all combinations of image pairs. Comparisons for the first set

of stimuli are on the left (1–9): SSIM, 2D-xcorr, SNR, Weighted SNR, Peak SNR, MSE, NQM, VIF, and VIFP. The SSIM-matrix for 1112 hybrid images is

displayed on the right. Color-bar on the right; red indicates greater and blue lower similarity between images. (E–F) Standard deviation against average

SSIM for each reference image with respect to the remaining stimuli, with the training CS1 depicted as a black dot. Note the well distributed similarities

spanning into a ‘wide’ (E) or a ‘narrow’ range (F). CS2 stimuli can be sorted by increasing (blue dots) or decreasing (red dots) similarity relative to the

CS1, used as the stimulus timeline for visual discrimination training. The wide and narrow SSIM training regimes only differ in the sorting of

equiprobable stimuli. The luminance distributions on the right (Set1:m6s: 85 6 1 lux, n 5 300; Set2: m6s: 84 6 1 lux, n 5 300) confirm that the stimuli

can be treated as equiluminant.

www.nature.com/scientificreports
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Fig. 1F; hereafter referred to as ‘narrow’ similarity range). The same
CS1 was used for the restrained ‘narrow’ and the unrestrained ‘wide’
training regimes.

Learning with fixed CS1/CS2 similarity. Having defined these sets
of equiluminant stimuli, we set out to study how mice learn to
discriminate between CS1 and CS2 images offering different
degrees of structural similarity over the course of acquisition. To
achieve this, we adapted a two-alternative forced-choice visual
discrimination task (Fig. 1A–C3,4). Initial quick improvements in
task performance are considered evidence of ‘‘procedural’’ learning
(i.e. task-specific response calibrations7), whereas subsequent
and more gradual improvements are considered evidence of
‘‘perceptual’’ or ‘‘stimulus’’ learning11,21. To minimize the contri-
bution of procedural learning on visual discrimination learning, we
exposed the mice from each group to an initial one-week period of
‘pre-training’ (150 training units), which allowed them to become
familiar with the swimming pool and the task, and learn to assign an
initial CS0

1 image with predictive value (Figs. S1–S3). All the groups
performed similarly at the end of this first week (one-way ANOVA,
F8,78 5 12.86, P 5 0.11; see also Methods). During the second phase

lasting two weeks (300 training units in Figs. 2 and 3; see also Figs.
S1–S3), we trained the mice to discriminate between pairs of images
presented over consecutive trials, using a fixed reinforced image (CS1

different to the CS0
1 from phase 1; see Methods) and a non-

reinforced image (CS2) from the above set of stimuli. Thus, CS1

discriminability was indirectly specified by exchanging CS2 stimuli
during the second phase of training. In these conditions, the mice had
to continuously pay attention to both the CS1 and CS2 images as
stimuli configuration changed from trial to trial.

We began by evaluating correct choice probability as a function of
training in three initial groups that were trained with fixed CS1/CS2

similarity (SSIM) of maximum (1, SSIM1), intermediate (0.32,
SSIM0.32) and low (0.04, SSIM0.04) levels (Fig. 2A; see also Fig. S1).
These groups allowed us to investigate how fixed but different levels
of stimulus similarity led to specific learning rate and maximum
discrimination performance22. As expected, the mice failed to dis-
criminate between identical CS1 and CS2 images in SSIM1 (Fig. 2A,
left, dashed line; Fig. 3E, white bar; Wilcoxon test, P 5 0.17, n 510).
By contrast, training with a constant SSIM of either 0.32 (Fig. 2A,
middle, grey) or 0.04 (Fig. 2A, right, black) yielded learning curves
with above random choice level (SSIM0.32: 84.9% 6 1.8%, n 5 10;

Figure 2 | Learning with constant and varying CS1 discriminability. Acquisition curves (thick lines, approximated by a Savitzky-Golay filter) for mice

trained with different temporal arrangements of CS1/CS2 similarity (SSIM). Thin dashed lines correspond to chance level at 50% correct choices.

(A) Training with a constant SSIM of 1 (left, dashed), 0.32 (middle, gray) or 0.04 (right, black). (B) Training with heterogeneous CS2 stimuli, linearly

sorted into increasing (blue) or decreasing (red) SSIM values over a ‘wide’ SSIM range. Asterisks below charts depict choice values above chance level

(Wilcoxon test, *P , 0.05). The average performance at 150 6 5 training units with identical average SSIM was higher for the increasing similarity group

(SSIMinc,wide: 70% 6 5%, SSIMdec,wide: 51% 6 6%; one-way ANOVA, F1,15 5 4.13, P 5 0.04). (C) Correct choice probability against average stimulus

similarity for the corresponding trials from each group. The data can be approximated by weighted linear regressions (dot size proportional to number of

cases per condition). Note how training influences the slope and intersection (with chance level) of the regression lines (thresholds depicted in bold

letters). Number of mice per group in parentheses.

www.nature.com/scientificreports
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SSIM0.04: 91.3% 6 1.2%, n 5 10; Fig. 3E, grey and black bars, respect-
ively; Wilcoxon test, P , 0.01). Despite the fact that these groups had
different learning rates (SSIM0.32: 0.63%/trial, n 5 10; SSIM0.04:
2.02%/trial, n 5 10; Figs. 2A and S1), they both reached similar
correct choice levels at the end of training (Fig. 3E; one-way
ANOVA, F2,29 5 123.5, P , 0.001, Bonferroni’s post hoc test, P .

0.05). These results confirm that learning rate increases by lowering
the CS1/CS2 similarity, in our specific experimental conditions. In

addition, increments in choice performance were relatively slow and
retained across daily sessions23.

Learning with positive, negative and oscillating gradients of CS1/
CS2 similarity. Sensory representations depend on the physical
properties of the perceived stimuli, yet the build-up of
discriminative information is sensitive to prior response and
reward probabilities13. This prompted us to investigate how the

Figure 3 | Learning with varying CS1 discriminability in a narrow range of CS1/CS2 similarity. Acquisition curves (thick lines, approximated by a

Savitzky-Golay filter) for mice trained with different temporal arrangements of CS1/CS2 similarity (SSIM). Thin dashed lines correspond to chance level

at 50% correct choices. (A) Training with equiprobable CS2 stimuli, linearly sorted into increasing (blue) or decreasing (red) SSIM values from a ‘narrow’

SSIM range. (C) Training with the same stimuli as in (A) arranged into increasing (blue) or decreasing (red) gradients of inter-training unit similarity

(DSSIM); this oscillating arrangement maximizes similarity gradients, whereas linear sorting minimizes them. Asterisks below charts depict above chance

choice values (Wilcoxon test, *P , 0.05). The average performance at 150 6 5 training units with identical average SSIM was: SSIMinc,narrow: 69% 6 5%,

SSIMdec,narrow: 61% 6 6%, DSSIMinc,narrow: 82% 6 3%, DSSIMdec,narrow: 65% 6 3%; one-way ANOVA, F3,35 5 9.44, P 5 0.02. (B, D) Correct choice

probability against average stimulus similarity for the corresponding trials from each group. Pooling the data from the 6 groups trained with varying

similarity rendered a linear regression with a clear negative slope, an adjusted R2 5 0.99, and an overall similarity discrimination threshold of SSIM < 0.33

(not illustrated), and shuffling the SSIM data by random permutations rendered infinite slopes (not illustrated). (E–G) Average performance of last 30

training units at the end of training. Asterisks indicate above chance choice values (Wilcoxon test, *P , 0.05, **P , 0.01) and lowercase letters depict the

differences between groups (paired-comparisons, one-way ANOVA, followed by Bonferroni’s post-tests, P , 0.05). Number of mice per group in

parentheses.

www.nature.com/scientificreports
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mice learn to discriminate between pairs of images that offer varying
degrees of structural similarity over the course of training. We
hypothesized that the sign and slope of steady variations in SSIM
(i.e. similarity) values, using a fixed set of visual stimuli should exert
measurable effects on discrimination learning. To assess this, we
compared data from mice trained with equiprobable CS2 stimuli,
linearly sorted into increasing (SSIMinc,wide) or decreasing
(SSIMdec,wide) SSIM values (i.e. sustained positive or negative
gradients; Fig. 1E blue and red dots, respectively). Importantly,
these two groups involved exactly the same training stimuli within
the ‘wide’ CS1/CS2 similarity range (Figs. 2B and 3F; see also Fig.
S2). Shortly after the beginning of training, we observed a growing
correct choice level in the increasing similarity group (SSIMinc,wide),
peaking (68.8% 6 3.3%, n 5 9), and then slightly decreasing when
the similarity between the stimuli became too high (Fig. 2B). By
contrast, the decreasing similarity group (SSIMdec,wide) displayed a
slower onset for correct choice (SSIMinc,wide: 55 trials versus
SSIMdec,wide: 215 trials) and higher maximal performance
(SSIMdec,wide: 81.6% 6 3.3%, n 5 9; Fig. 2B, see also Fig. S2). To
investigate the overall relationship between correct choice and
stimulus similarity during discriminative trials, we calculated the
average SSIM of all image pairs satisfying group choice
probabilities given by [correct_mice/total_mice]. The resulting
discrete performance values (y-axis) against the average SSIM (x-
axis) for each training regime are plotted in Fig. 2C and were well
described by weighted linear relationships. Remarkably, each
training program was associated with a specific slope and
discrimination threshold (i.e. the intersection of the linear
regression with chance level), which was 0.46 for SSIMinc,wide and
0.19 for SSIMdec,wide, revealing flexible visual performance.

Based on these results, we trained two additional groups of mice
(SSIMinc,narrow and SSIMdec,narrow; Fig. 3A, B, ‘narrow’ similarity
range; see also Fig. S3A, B) in which similarity was kept below the
discrimination threshold obtained with SSIMinc,wide (i.e. SSIM 5

0.46; Fig. 2C). This allowed us to re-examine the relationship
between visual discrimination and learning in situations where
CS1 discriminability remained uncompromised. In these ‘narrow’
conditions, correct choice level reached a plateau at maximal per-
formance (76.4% 6 2.7%, n 5 10) in the SSIMinc,narrow group
(Fig. 3A) while the decreasing similarity group displayed a slower
onset for correct choice (SSIMinc,narrow: 45 trials vs. SSIMdec,narrow:
120 trials) and higher peak performance (SSIMdec,narrow: 86.8% 6

2.6%, n 5 10; Fig. 3A, see also Fig. S3A, B). Linear regressions for
choice versus average similarity are shown in Fig. 3B, with thresholds
of 0.23 for SSIMinc,narrow and 0.25 for SSIMdec,narrow. These results
confirm that training with decreasing similarity yielded a higher
maximum performance than training with increasing similarity
(Fig. 3F, ANOVA, F3,37522.3, P , 0.001, Bonferroni’s post hoc tests,
P , 0.05 when comparing pairs among all groups), thereby influ-
encing learning rate (SSIMinc,wide: 1.53%/trial; SSIMdec,wide: 3.28%/
trial; SSIMinc,narrow: 1.01%/trial; SSIMdec,narrow: 0.73%/trial). Notably
all four training regimes led to above random choice levels (Fig. 3F,
Wilcoxon test, *P , 0.05, **P , 0.01), including SSIMinc,wide with
maximum SSIM values at the end of training (Fig. 2B, blue), indi-
cating that the mice effectively learned to discriminate between very
similar images. Interestingly, training with decreasing similarity led
to similar performance levels for SSIMdec,wide and SSIMdec,narrow at
the end of training, despite the fact that discrimination was poten-
tially compromised in SSIMdec,wide, due to the higher SSIM values in
the wider range of similarity. The slower onset and higher learning
rate in SSIMdec,wide might reflect some form of task-irrelevant visual
perceptual learning24.

Finally, we assessed two additional groups of mice trained with
increasing (DSSIMinc,narrow) or decreasing (DSSIMdec,narrow) inter-
training unit gradients of CS1/CS2 similarity within the narrower
similarity range. Using such oscillating gradients, we investigated

how variations in discrimination difficulty imposed either at the
beginning or at the end of training influenced learning. To our sur-
prise, both DSSIM groups (Fig. 3C; see also Fig. S3C, D) displayed
similar maximum performance (DSSIMinc,narrow: 71.9% 6 2.6%, n 5
10; DSSIMdec,narrow: 75.9% 6 1.9%, n 5 10) and similar learning rate
(DSSIMinc,narrow: 1.20%/trials; DSSIMdec,narrow: 0.84%/trials). Thus,
training with either increasing or decreasing inter-training unit sim-
ilarity gradients led to comparable (Fig. 3G, t test, P 5 0.44) above
random choice level (Wilcoxon test, **P , 0.01). We conclude that
the observed differences in conditioned response between the line-
arly increasing and decreasing similarity groups cannot be accounted
for by disruptions in the normal course of acquisition, as seen from
the fact that both groups subjected to inter-training unit similarity
variations (DSSIMdec,narrow and DSSIMinc,narrow) yielded similar
learning curves.

Because maximum retention level depends on the number of
training repetitions22, we compared the number of swimming trials
required to solve the task (i.e. to complete phase 2 of training) for
each experimental group. As expected, the mice trained with
SSIM0.04 required the lowest number (SSIM1: 569 trials 6 8 trials,
n 5 10; SSIM0.32: 420 trials 6 7 trials, n 5 10; SSIM0.04: 370 trials 6 6
trials, n 5 10; one-way ANOVA, F2,26 5 25.3, P , 0.001), whereas
both the groups trained with wide (SSIMinc,wide: 470 trials 6 12 trials,
n 5 9; SSIMdec,wide: 491 trials 6 5 trials, n 5 9; one-way ANOVA,
F1,15 5 3.6, P 5 0.058) and narrow SSIM range (SSIMinc,narrow: 435
trials 6 11 trials, n 5 10; SSIMdec,narrow: 448 trials 6 10 trials, n 5 10;
DSSIMinc,narrow: 447 trials 6 7 trials, n 5 10; DSSIMdec,narrow: 459
trials 6 8 trials, n 5 10; one-way ANOVA, F3,35 5 5.2, P 5 0.158)
required similar amount of swimming trials to complete training.
Therefore, the differences in discrimination performance (Fig. 3F–
G) cannot be explained by differences in training trials. Additional
comparisons and swimming efficiency as a function of training are
provided in Fig. S4.

Decay of retention during extinction. To further examine the
impact of the different training regimes on discrimination
learning, we conducted an ‘extinction’ test22,25 with a fixed low
similarity to monitor the decline of the conditioned response in
the absence of reinforcement. As expected, key features of the
conditioned response (v.gr. choice, path-length and escape latency)
decreased with the number of extinction trials (data not shown). To
enhance the sensitivity of this test, we calculated a ‘retention index’
as the accumulated distance travelled in the CS1-arm divided by
the total path length, whose slow decline improved the detection
of group-differences (Fig. 4A–C). Interestingly, training with in-
creasing similarity led to faster extinction decays than with
decreasing similarity, both for the ‘wide’ and ‘narrow’ SSIM
regimes (SSIMinc,wide: t 5 14.2 6 1.5 training units; SSIMdec,wide: t
5 42.0 6 8.8 training units; SSIMinc,narrow: t 5 14.3 6 2.3 training
units; SSIMdec,narrow: t5 54.2 6 17.4 training units; unpaired t test, P
, 0.05; Fig. 4D). This difference was absent between the groups
trained with either increasing or decreasing inter-training unit
gradients in SSIM (DSSIMinc,narrow: t 5 52.2 6 22.2 training units;
DSSIMdec,narrow: t 5 55.6 6 15.6 training units; unpaired t test, P 5

0.89), and also between the groups trained with constant SSIM
(SSIM0.32: t 5 29.5 6 2.6 training units; SSIM0.04: t 5 31.9 6 11.8
training units; unpaired t test, P 5 0.66; Fig. 4B). Therefore, the sign
of the similarity gradients determined the retention level not only
during acquisition (Figs. 2, 3 and S1–S4A), but also during
extinction. However, although the extinction tests were conducted
with a very low degree of CS1/CS2 similarity, common to all groups,
it is still unclear how the different levels of performance at the end of
training (Fig. 3E–G) relate to the subsequent decay during extinction
(see also26).

Conditioned response as a function of training with stimuli of
varying similarity. In perceptual discrimination, the ability of

www.nature.com/scientificreports
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sensory-motor circuits to integrate sensory evidence over time is
thought to underlie the process of decision-making13,27,28.
Movement enhances the capacity to collect discriminative
information29 because the different viewpoints produced through
locomotion transform the optic array, increasing the amount of
sensory information12. With this in mind, we first compared the
data from discrete choice measures with that of the continuous
measures from the mice’s swimming trajectories (Figs. S1–S3).
Both path-length and escape latencies decreased as learning
progressed, with their values tending towards asymptotic levels,
likely minimizing the cost of adaptive behavior13. However, the
probability of observing ‘efficient’ CS1-guided behavior was
strongly influenced by the training regime, since increasing
stimulus similarity produced higher error rates, path lengths and
escape latencies, measures that depend on visual processing,
stimulus discriminability and motor action27,30–32. To explore this
further, we analyzed the swimming paths of the mice as a function
of their training. Despite the evident complexity of the trajectories,
we could detect substantial differences between the groups by simple
visual inspection. For example, in Fig. 5A we show the swimming
paths of two mice belonging to different training regimes (columns,
SSIM0.32, and SSIM0.04) at two training stages (rows, training unit
150, 300; see also Fig. S5A). We hypothesized that paths of variable
length and curvature would occur in conditions that range from
‘random’ to ‘optimal’ CS1-guided swimming. To test this
possibility, we extracted specific topographic information from
each swimming trial. First, we divided the swimming pool into six
‘regions of interest’ (1 to 6) that were defined in accordance to the
CS1 position (Fig. 5B): regions 3 and 4 allowed visual access to both
the CS1 and CS2 images, whereas regions 2 and 5 allowed visual
access to the CS1 or the CS2, and regions 1 and 6 were those
neighboring the CS1 and the CS2, respectively. Each swimming
trial was then quantitatively described by an attribute vector
containing the path length (L) and the cumulative local curvature
(C) for each partition (i.e. 1 to 6). Subsequently, the attribute vectors

from all swimming trials were pooled together and fuzzy-clustered,
using the first eight principal components. In other words, we
typified each swimming path with respect to the center of mass of
each cluster, defined by a specific constellation of behavioral
attributes (Fig. S5C). In the group averaged cluster maps, their
similarity to each of the eight clusters was represented in color and
piled up vertically (y-axis) as a function of the training units (x-axis),
for correct (left) and incorrect (right) swims (Fig. 5C). To align these
results to a single reference, we subtracted the average of the eight
cluster weights from the last 30 trials of the SSIM0.04 group from each
cluster map, and then averaged the sum of the referenced values from
all clusters (Fig. 5D). In these line plots, consequently, a conditioned
response approached ‘optimality’ when it differed less from the
average performance level reached at the end of SSIM0.04 (dotted
line). Two-way repeated-measures ANOVAs followed by post hoc
tests revealed that the mice learned to solve the task differently
during acquisition, depending on how stimulus similarity varied
over the consecutive learning trials (*P , 0.05 below Fig. 5D). In
the same way, the point-to-point subtraction (21 in blue and 11 in
red) between the cluster maps of the [increasing]-[decreasing]
training regimes, revealed clear group differences in the structure
of the swimming paths (Fig. 5E).

At the end of training, the referenced conditioned responses
(Fig. 5F–H; Wilcoxon test, *P , 0.05, **P , 0.01) and their relative
differences (depicted by lower case letters, P , 0.05 for all pairs, one-
way ANOVA tests, followed by Bonferroni’s post hoc tests or
Kruskal-Wallis test followed by Dunn’s post hoc tests; see Methods
for details) were fully consistent with our previous choice compar-
isons (Fig. 3E–G), yet the differences in the incorrect swims (Fig. 5F,
G) indicate that important correlates of learning were stored in the
incorrect choice records.

Transitions between response variants. By careful inspection, we
realized that the mice could use multiple strategies to solve the
task4,33. For instance, in some trials the CS1 image could not be

Figure 4 | Decay of retention levels during extinction. Extinction tests were conducted with the same CS1 used during phase 2 of training and a fixed CS2

(common to all groups) with very low similarity against the CS1 (SSIM 5 0.04) in the absence of reinforcement (i.e. the submerged platform was

removed; see Methods). (A–C) Group average values of the retention index as a function of the extinction trials. The decay was approximated by a mono-

exponential process (continuous lines). Number of mice per group in parentheses. (D) Mono-exponential curves were non-linear fit to the data from

individual mice and their decay-times compared across groups. Note the apparently slower decay in the retention index obtained with SSIMdec,narrow

compared to SSIM 5 0.04. Asterisks denote differences between groups (unpaired t test, *P , 0.05).

www.nature.com/scientificreports
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Figure 5 | Conditioned response as a function of training with varying stimulus discriminability. (A) Sample trajectories at training units 150 and 300

(rows) of mice trained with a constant SSIM of either 0.32 (left) or 0.04 (right), with the local curvature represented in color (see Methods). (B) Scheme of the

swimming pool, divided into 6 ‘regions of interest’, defined in terms of their locations relative to the CS1 image. Using data on the path length and cumulative

curvature from each sub-region, pattern vectors for each swimming trial were calculated, pooled and fuzzy-clustered using principal component analysis (see

also Fig. S5). Regions are symmetric and allow combined access to CS1 and CS2 (regions 3 and 4), visual access to CS1 or CS2 before making a choice

(regions 2 or 5) or visual access to CS1 or CS2 after making a choice (regions 1 or 6). (C) Group average cluster maps from the cluster analysis of the mice’s

swimming trajectory as a function of their training; the data from correct (left) and incorrect (right) swims are shown separately. Color designates the distance

to the center of mass for each of the 8 identified clusters, piled up as rows (color-bar on the right). (D) Average sum of all clusters per training unit (line plots;

mean 6 S.E.M) shows the evolution of conditioned responses as a function of training for correct and incorrect swims. Asterisks depict differences between

groups (Two-way repeated measures ANOVA tests followed by Bonferroni’s post hoc tests, *P , 0.05). (E) Point-to-point subtraction between the above

cluster maps from (C) is shown on black background. Color-bar on the right. Black vertical lines in panels C and E arise from insufficient data to estimate the

average clusters for the given training unit. (F–H) Group comparisons of conditioned responses at the end of training, as measured by the difference from

SSIM0.04. Asterisks depict differences against the reference (Wilcoxon test, *P , 0.05, **P , 0.01); lowercase letters depict across-groups differences (one-way

ANOVAs, followed by Bonferroni’s post hoc tests, or Kruskal-Wallis tests, followed by Dunn’s multiple comparison tests, P , 0.05; see also Methods).
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used as a reliable predictor of the platform due to the high degree of
stimulus similarity. In such scenario, the mice displayed alternative
solutions to the task such as randomly choosing either arm of the
pool or swimming repeatedly to the same arm (i.e. side bias)3,33. We
analyzed our training programs and found that solving the task in a
side biased manner during the entire training phase would be more
efficient than making random or other choices (completely biased:
537.5 6 0.2 trials/300 training units, n 5 1000 ‘subjects’; random
choosing: 590.5 6 0.7 trials/300 training units, n 5 1000 ‘subjects’;
‘following last CS1’: 765.5 6 0.1 trials/300 training units, n 5 1000
‘subjects’, one-way ANOVA, F2,2996 5 2684.2, P , 0.001). However,
we also noted that biased and random choosing would produce
average choice values around chance level (completely biased: %
correct 5 50.1% 6 1.6%; random choosing: % correct 5 50.1% 6

1.5%; ‘following last CS1’: % correct 5 34.83% 6 4.8%), indicating
that these two scenarios could not be differentiated by comparing
correct choice distributions. These implicit differences in task
efficiency derive from the fact that the position of the CS1 and
platform (left or right) was continuously exchanged according to a
Gellerman schedule3,4, which prohibits their placement in the same
arm for more than three consecutive trials. This means that choosing
the same arm would produce a correct choice after a maximum of
three error repetitions, whereas other less efficient strategies, like
random choosing or following the last position of the platform,
can reach up to five error repetitions. Altogether, these numbers
highlight the fact that our training regimes could lead to multiple
response variants, with different swimming efficiencies arising from
selective usage of discriminative information (see also Fig. S4B).

We hypothesized that the probability of displaying CS1-inde-
pendent (v.gr. biased) behavior should depend on CS1/CS2 similar-
ity and on how it changed during training. We quantified the
strength of the ‘side bias’ for each experimental group as the average
number of consecutive trials in which the mice systematically swam
to the same arm of the pool, either left or right, reflecting the lack of
engagement in the discrimination task. Strikingly, we found that in
SSIM1, where visual discrimination was impossible (see Fig. 2A), the
mice progressively learned to become side biased (Fig. 6A), suggest-
ing a slow increase in task efficiency (compared against random-
choice behavior; see also Fig. S4B). By contrast, the mice trained
on a regime with decreasing similarity showed an initial increase
followed by a rapid drop in side bias, indicative of a sharp transition
to CS1-dependent behavior (Fig. 6B, C). Side bias was much smaller
in the groups trained with increasing similarity, and it was dramat-
ically smaller in DSSIMdec,narrow than in SSIMdec,narrow (Fig. 6C).
Further inspection confirmed that the rapid drops in side bias
observed in the mice trained with regimes of decreasing similarity
(red arrows in Fig. 6B, C) preceded the onset of successful discrim-
ination, as detected through choice (Figs. 2B and 3A).

To estimate and compare the strength of the transitions from side-
bias to CS1-dependent behavior, we created a quantitative measure
‘z’, given by the difference between two competing processes: one
that accounted for correct choice minus another one that accounted
for side bias (see Methods). We identified the time point of the
transitions by minimizing the sum of the squared errors between
the dataset and a single free-knot linear spline34 and estimated their
relative strength by calculating the difference in slopes, before and

Figure 6 | Transitions between complementary task-solving strategies during visual discrimination learning. Alternative task-solving strategies emerge

depending on the extent to which the CS1/CS2 images become a reliable source of information for behavioral control. (A–C) Side-bias (group average) as

a function of training for the different groups (see Methods). At the bottom of each panel, the choices from individual mice (y-axis) are shown as either

black (right choices) or white (left choices) rectangles as a function of training unit (x-axis). Individual side-bias is reflected as horizontal white or black

blocks of different lengths. The red squares in the SSIMdec panels depict the location of the training unit at which each subject presented the biggest drop in

side-bias. Note how the mice trained with a constant SSIM of 1 slowly adopted a side-bias (A).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1048 | DOI: 10.1038/srep01048 8



after the turning points (Fig. 7). This analysis revealed that there
were sharper and stronger transitions in the groups trained with
decreasing rather than with increasing similarity (SSIMinc,wide: train-
ing unit 144, SSIM 5 0.31, Dm 5 0.007; SSIMdec,wide: training unit
179, SSIM 5 0.28, Dm 5 0.016; SSIMdec,narrow: training unit 121,
SSIM 5 0.25, Dm 5 0.013; Fig. 7A, B), and training with dynamic
gradients of inter-training unit SSIM quickly led to CS1-guided
search (Fig. 7C). Also, the rising slope into CS1-guided behavior
was much steeper in SSIMdec,wide than in SSIMdec,narrow (F1,296 5

113.1, P , 0.001).

Constraint in the discrimination process. The compromise
between discriminability and discrimination learning can be
visualized when training (y-axis) is plotted with varying stimulus

similarity (x-axis) against either biased trials (Fig. 8A) or
successful discrimination performance (Fig. 8B; displayed in color;
see also Fig S4B). The shaded regions in these figures frame the
variable range of stimulus similarity observed for biased and
discriminative trials. Plotting the relationship between the average
discrimination performance (y-axis) against the average CS1/CS2

similarity during training (x-axis) reveals a crucial property of the
discrimination process (Fig. 8C). Namely, training with decreasing
similarity rendered higher average discrimination performance than
training with increasing similarity, although it did so at the expense
of less precision (Fig. 8D) and over a smaller similarity range
(represented by the horizontal bars; Fig. 8C). Conversely, lower
discrimination performance was associated with more flexibility in
resolving difficult discriminative operations. This increased the

Figure 7 | Graded transitions into visually-guided behavior. A quantitative measure ‘z’ is obtained by subtracting visual and non-visual factors, plotted

as a function of training for groups trained with varying CS1 similarity (see Methods and Results). The transitions to visually-guided behavior were

detected by minimizing the sum of the squared errors between the dataset and a single free-knot linear spline34. The strength of these transitions is

proportional to the differences in the slopes around the transition points, as indicated by the arrows. Stronger transitions are observed when mice are

trained with decreasing (in red) CS1/CS2 similarity, as opposed to increasing similarity (in blue; see Results for statistical details).
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range (and average similarity) for successful discrimination and
average escape latencies (Fig. 8C, inset30,35, but see31), in agreement
with predictions36–38.

Discussion
In this study, we addressed the interplay between discrimination
and learning. We adapted a two-alternative forced-choice visual
discrimination task3,4 and trained freely moving mice to discriminate
between a constant CS1 (reinforced) and a varying CS2 (non-rein-
forced) image, exchanged over consecutive trials. We used hetero-
geneous CS2 images with signals broadly distributed over different

spatial frequencies, below the mouse visual acuity threshold3,4. To
manipulate CS1/CS2 discriminability, we selected specific CS2 stim-
uli with different degrees of structural similarity to the CS1, mea-
sured using parametric descriptions derived from image quality
metrics. Hence, we employed such measures to arrange the same
stimuli into different configurations of variable discriminability. As
expected, when CS1/CS2 similarity remained constant, learning
rates and peak performance were negatively correlated to CS1/CS2

similarity22,36–39. However, when the mice were trained with equi-
probable training stimuli covering a wide range of varying CS1/
CS2 similarities, then the sign of the sustained SSIM gradients (either

Figure 8 | The interplay between visual discrimination and learning. Training with varying CS1/CS2 similarity exposes the flexibility of visual

discrimination performance. (A–B) Complementary scatter plots for biased trials (A) and visual discrimination performance (B) as a function of training

(y-axis) and CS1/CS2 similarity (x-axis). The black regions define the similarity range for biased swims ($2; A) or successful discrimination (B). Gray

dots represent unbiased choices (A) or choices undistinguishable from chance level (B, color-bars on the right; see also Methods). (C) Average

discrimination performance from the complete set of discriminative trials against the average stimulus similarity during training. The vertical bars are the

S.E.M. of the discrimination performance (amplified in D), while the horizontal bars represent the SSIM-range for successful discrimination (identical to

shaded regions in B). Dot-size is proportional to average efficiency (see Fig. S4). The plot reveals a compromise: training with decreasing similarity leads

to higher levels of discrimination performance but covering a smaller similarity range for successful discrimination, as opposed to training with increasing

similarity. The upper inset shows that in discriminative trials the average escape latency increases with the degree of CS1/CS2 similarity. In this task, the

mice benefit from having quick reaction times, because the platform (reward) is spatially dissociated from the regions where visualization of the stimulus

occurs and, as a result, speed might be favored over accuracy. Continuous lines are weighted linear regressions. (D) Despite the lower discrimination

performance, training with increasing similarity presents a more precise pattern of discrimination choices.
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positive or negative) produced markedly different learning profiles.
Specifically, training with negative similarity gradients was assoc-
iated with faster learning, higher (albeit less precise) average choice
performance and slower extinction than with positive gradients. This
indicates that the animals exposed to the different, yet comparable,
training conditions learned to discriminate items from the visual
stream in different ways (see also8). Notably, the group trained with
increasing similarity also reached above random choice level per-
formance at the very end of training, when CS1/CS2 similarity
reached maximum values, indicating that the stimuli still carried
enough discriminative information for this specific group of mice.
Because initial SSIM values were un-restrained and covered a wide
range of similarity, we used data on discrimination performance
from the mice trained with these stimuli to determine psychophysical
thresholds for visual discrimination. Using the upper limit of these
thresholds, we created a new set of hybrid CS2 stimuli covering a
‘narrow’ CS1/CS2 similarity range, which did not compromise CS1

discriminability. Training with equiprobable stimuli covering this
narrower range yielded similar results as training with the wide
range, although with smaller differences between groups. The two
groups of mice trained with decreasing similarity (SSIMdec,wide and
SSIMdec,narrow) learned to discriminate very similar images with sim-
ilar performance level ($80%), despite the fact that discrimination
was potentially compromised at the beginning of training in
SSIMdec,wide, due to the low stimulus discriminability. It is likely that
in SSIMdec,wide, the unsuccessful discrimination attempts that
occurred at the beginning of training contributed to learning by
‘boosting’ discrimination performance as soon as CS1 discriminabil-
ity crossed over certain threshold (see also24).

Present models of decision behavior rely on the idea that discrim-
inative decisions are based on sensory evidence that is integrated over
time (with some degree of noise and leakage) until the representation
of one of two mutually exclusive alternatives reaches a critical
level13,14,27,28,40–42. This probabilistic sampling assumption predicts
that learning is expressed as a gradual improvement in behavioral
performance over successive trials, superimposed on significant vari-
ability from one trial to the next. In line with this, we found that
path-length, escape latencies and their variability, asymptotically
decreased as learning progressed, although these measures were also
highly sensitive to the different training regimes. Our quantitative
analysis of conditioned response development not only confirmed
the group differences arising from correct choice, but it also revealed
that important learning correlates were stored in the error trials.
Moreover, we also found that the mice could use multiple task-solv-
ing strategies with different efficiencies4,33. For instance, they could
solve the task not only by using the CS1 as a relevant source of
information for behavioral control (a highly efficient strategy), but
they could also display side bias swimming (a strategy of medium
efficiency), or simply choose randomly (a weak strategy). Using this
characterization, we went one step further and found that drops in
side bias, which were detected individually, preceded the onset of
CS1-dependent behavior. Side bias was much less prevalent in the
groups trained with increasing similarity, while the groups trained
with decreasing similarity initially showed greater bias and subse-
quently, displayed sharper and stronger transitions into CS1-guided
behavior. To our surprise, training with oscillating gradients of inter-
training unit SSIM quickly led to CS1-guided searching and side bias
was dramatically reduced in DSSIMdec,narrow when compared to
SSIMdec,narrow. Altogether, our characterization of the transition into
CS1-guided behavior demonstrates that both sensory and non-sens-
ory information influenced choice behavior8,43,44 (see also13). Such
measures may become useful to detect early stages of visual discrim-
ination learning and correlates of attention deficit disorders45.

The differences in learning rate and side bias between the
SSIMdec,wide and SSIMinc,wide groups, suggest that attention signals
and/or diffuse neuromodulatory systems were differentially engaged

in these groups9,46,47. It has been reported that attention functions as a
gate to ensure that visual perceptual learning occurs only in response
to features to which attention is directed (task-relevant features),
enhancing the stream of signals to specific brain areas24. Moreover,
attention is frequently seen as a perceptual filter that limits access to
awareness and memory48, and theoretical work anticipates that
sensory representations are dynamic and that they interact in a
non-linear manner to compete to enter into a limited-capacity atten-
tion buffer25,36–38. Interestingly, our results uncovered an inverse rela-
tionship between discrimination performance and discriminative
resolution. This constraint is in agreement with the idea of limited
computational resources to solve the discrimination task and implies
that sensitivity within a similarity range cannot be improved without
sacrificing performance in another49. An attractive proposal is that
learning easy (or low precision) tasks is linked to plasticity in higher
level cortical areas which generalizes across locations and feature
values, whereas training in high precision tasks is more specific to
the trained stimulus implicating lower representational levels (for
review see8).

The possibility of transforming indiscriminable stimuli into dis-
criminable perceptions accentuates the potential of learning to
enhance sensory perception and support adaptive behavior50. One
of our main results is that the discrimination threshold was deter-
mined by controlled variations in similarity during visual learning.
Again, this suggests that cortical mechanisms might have been dif-
ferentially engaged in our experimental groups11,39,50. In addition, the
overall correct choice level in discriminative learning trials was nega-
tively correlated to CS1/CS2 similarity, which indicates that the
discrimination process can be approximated by a subtraction
operation19,28,49,51, at least from a steady state perspective. If one
adopts this view, solving the task would involve a three-step sequence
of causally-linked events: i) encoding the CS1 and CS2 stimuli, ii)
inferring correct choice probability based on the structural difference
between both stimuli, and iii) deciding according to the sign of such
difference.

Problems in estimating psychometric sensitivity have been largely
ignored in the literature on the physiology of perception. In most
neurophysiological experiments, animals are presented with more
than two stimuli, varying their discriminability, and usually res-
ponses are analyzed after performance ‘no longer improves’52.
However, psychophysical performance, measured in terms of the
proportion of correct responses, may differ in different tasks, and
even within the same task53. Using identical sensory information
arranged in different combinations during training, we here explored
and described how learning interacts with measured discriminabil-
ity. Our results highlight the fact that sensory and non-sensory fac-
tors influence discrimination performance and compellingly
demonstrate how mice use their visual system to perform behavio-
rally-relevant computations with explicit control of visual informa-
tion. We described here a new training protocol with complex visual
stimuli and provided the analysis tools to detect discrimination
thresholds and the transition from sub-optimal conditioned res-
ponse variants into discrimination-guided behavior. These methods
are useful to analyze visual discrimination, perceptual learning and
selective attention in mice.

Methods
Animals. Behaviorally naı̈ve, wild-type C57BL/6 male mice (n 5 88, P40–50, 21 6

3 g at the start of experiment; Charles River, Sulzfeld, Germany) were trained in a
two-alternative visual discrimination task (Fig. 1). The mice were housed individually
at 22uC under a 12/12 h light/dark cycle with standard sleeping periods, 35–40%
relative humidity, ad libitum access to food and water and a fast-track device for
physical exercise (PLexx, Netherlands). The mice from different litters were
randomized into 9 groups according to the different training regimes (see below).
Groups of 4–6 mice were handled by a single experimenter and they were habituated
to the training room 3 days before the experiments began. The experiments were
performed during the light phase (between 10:00 and 16:30), over a single daily
session consisting of 3 blocks of 10 ‘training units’ (see below) with 10 min breaks, 5
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days a week, during 4 weeks. All experiments were carried out at the Max Planck
Institute for Medical Research in accordance with the animal welfare guidelines of the
Max Planck Society and were approved by the regional commission in Karlsruhe (G-
171/10).

Generation of equiluminant stimuli. 300 pictures were downloaded from the
internet, transformed into black and white pixels, centered on a white 22 3 22 cm
square and iteratively scaled up/down until the cumulative surface areas of the black
and white pixels were identical (tolerance 5 0.01%). The resulting images consisted of
white shapes on a black background, or vice versa (i.e. the shape was the only relevant
‘feature’). The images were of similar size, and were further standardized by using a
symmetric Gaussian low-pass filter (60 pixel size, 30 pixel standard deviation; ,0.30
cycles per degree [c/d]), removing all the frequency components that spanned beyond
the mouse’s visual acuity of ,0.48 c/d4. The structural similarity index (SSIM; see
below) of this set of images ranged from 20.07 to 1. A second set of images was
created artificially to increase the number of stimuli with lower structural similarity
(0.04 # SSIM # 0.39 against our chosen CS1). To do this, linear combinations of
image pairs from the original set were re-scaled, re-filtered and selected by using
nearest neighbors to random numbers from a known Gaussian distribution. As a
result, the images from both sets were equiluminant (Set1: 85 6 1 lux, n 5 300; Set2: 84
6 1 lux, n 5 300; measured at a distance of 46 cm and at water level; Voltcraft MS-
1500, Hirschau, Germany), making the visual discrimination task independent of
brightness information (Fig. 1E, F). We confirmed that in our experimental
conditions, visual discrimination was invariant to visual cues other than those
displayed by the monitors4.

Image quality metrics. We used image quality metrics (IQM) to compare the degree
of similarity between our training stimuli. IQM refers to algorithms that measure the
visual equivalence of two images54 representing a quantitative set of measures that
predict the perceived image quality: when physical differences (i.e. pixels) become
visible differences perceived by human observers. These are algorithms that are
broadly applied for image acquisition, compression, communication, displaying,
printing, enhancement, analysis and watermarking. We implemented 5 ‘statistics-
oriented’ measures (i.e. based on signal differences): 2D-cross correlation (XCORR 5

SS(reference_image1?query_image2)/(s1s2)), mean-squared-error (MSE 5 (1/
N)?S(reference_pixeli-query_pixeli)2), signal-to-noise ratio (SNR 5 10?log10?((1/
N)?S(reference_pixeli)2/MSE)), peak signal-to-noise ratio (PSNR 5 10?log10?(2552/
MSE)), weighted signal-to-noise ratio (WSNR55), and 4 ‘visual-system-oriented’
measures (i.e. based on structural information loss): a structural similarity index
(SSIM20), visual information fidelity (VIF56), pixel-based VIF (VIFP56) and noise
quality measure (NQM57).

Visual discrimination learning. We used a well-established two-alternative, forced
choice, water discrimination task (see3,4), under a ‘free response’ paradigm, whereby
the mice are allowed to control the decision time autonomously. In this task, mice
were trained to visually discriminate between two images displayed simultaneously
on two separate monitors, and to learn that swimming towards the reinforced image
(CS1) and reaching a transparent submerged platform (US) was rewarded with
escape from water, whereas swimming towards the non-reinforced image (CS2) was
not. Once the choice line was crossed, which limits a decision area offering visual
access to both images, the subjects were considered to have made a choice. Learning
was inferred by correct choice and conditioned responses. To avoid positional
learning, the side of the CS1 and platform (left or right) was continuously changed
according to a Gellerman schedule3,4. To encourage discrimination learning, we
increased the cost of making mistakes, as swimming trials with incorrect choices were
immediately repeated until the animal made a correct choice with a maximum of 5
errors. These sets of swims, ranging from 1 to 6, constituted a ‘training unit’, and they
involved the same pair of CS1/CS2 images (Fig. 1C). While the inter-trial interval was
of 10 s, the period between training units was 1–2 min (i.e. distributed practice) and
short training sessions of 30 daily training units were used4. The mice remained in the
platform for 30 s before being removed from the pool. During resting periods, the
mice were transferred to individual chambers with a warm plate. The water
temperature (21 6 1uC) and room illumination were kept constant throughout the
experiments, and the pool was wiped down daily with 70% ethanol. The experiments
were conducted in silence. Animals were behaviorally naı̈ve to the task and began the
training phase displaying correct choices at chance level. Each experiment involved
three phases. During phase 1 (i.e. ‘pre-training’, duration: 1 week; training units 1–
150), the mice familiarized with the swimming task and they learned to assign a CS0

1

image with a predictive value (CS2 was 50% gray). During phase 2 (i.e. ‘training’,
duration: 2 weeks; training units 151–450), the mice were trained using regimes of
different and varying CS1/CS2 similarity. During phase 3 (i.e. ‘extinction’, duration: 1
week, training units 451–600), we monitored the decay of the conditioned response at
low SSIM in the absence of reinforcement (i.e. with the platform removed). Balanced
experimental conditions were intermingled (i.e. increasing vs. decreasing SSIM) and
all the groups (sample size ,10 mice) shared the same CS1

0 during phase 1, the same
CS1 during phase 2 and 3 (different to that of phase 1), and the same CS2 during
phase 3. Performance at the end of pre-training reached maximum level within the
two last blocks of 30 training units (one-tailed paired-tests, t87 5 1.5, P 5 0.07), did
not vary across groups (Kruskal-Wallis tests followed by Dunn’s multiple comparison
tests, H9 5 12.9, P 5 0.12) and did not correlate with the performance during the
second phase (paired-t tests followed by Pearson correlation, P , 0.01). To estimate
the amount of human error during training, we visually reanalyzed a random sample

of 10% of all swimming trials (per mouse) and found that the average error rates were
relatively low (mischaracterized choices: 3.04% 6 1.00%; misplaced platform: 1.52%
6 1.29%) and trainer-dependent.

Behavioral analysis. For each pair of CS1/CS2 images, we calculated the mean
probability (6 S.E.M) of making a correct choice on the first presentation (%
Correct), and of making 5 consecutive errors (% Error) with the same pair of images.
The change of these probabilities over the training units was approximated by a
Savitzky-Golay filter (span 5 25 trials, degree 5 1), which served as a low-parameter
estimate to visually compare group data from different training regimes. Learning
(also referred to as acquisition) rates were calculated as the maximum performance
level divided by the number of training units required to achieve such a level after
successful discrimination was detected (i.e. above chance level). We used a digital
video camera mounted above the pool to record each swimming path throughout the
entire set of experiments. For each trajectory, we analyzed continuous measures of
path length (i.e. cumulative Euclidean distance) and the escape latency (i.e. the time of
release from the chute until completion of the task). These measurements are strongly
task-dependent30,31. To examine the data from the extinction phase of the experiment,
we calculated a ‘retention index’, given by the accumulated distance travelled in the
CS1-arm divided by the total path length (Fig. 4). A local measure of path curvature
(in u/pixel) for each discrete position X within the path was computed as the angle
between AX and BX divided by the path length of the segment contained in R, where
A and B are the extreme points that occur in a circle of radius R 5 15 pixels 5 6.66 cm
around X. We discovered that multiple path structures with variable curvature occur
in conditions that range from apparent random to ‘optimal’ CS1-guided search. To
analyze and categorize these conditioned strategies, pattern vectors from all
swimming trials were split into ‘regions of interest’ in the pool (Fig. 5 and Fig. S5).
Next, they were joined together and clustered with a fuzzy C-means algorithm, using
the first 8 principal components. We quantified the strength of the side-bias as the
number of consecutive swimming trials that the mouse swam towards the same arm
of the pool (either right or left), showing invariance to the CS1 position. A ‘z’ score
was computed as the sliding average of [choice-50%] – k*[Bias], over blocks of 30
training units for each mouse, with an arbitrary k 5 1/50 for all groups (the turning
points of ‘z’ are independent of k; Fig. 7) and combined linear regressions were fit by
minimizing the sum of the squared errors between the dataset and a single free-knot
linear spline34. Swimming efficiency was calculated as E 5 12(([X]21)/
(Xrandom21)), where X is the group average number of swimming trials per training
unit and Xrandom corresponds to the average number of swimming trials required to
complete each training unit by making random choices (R1000: binomial distribution,
n 5 1000 ‘subjects’; see Fig. S4). Analysis, stimulation and video-tracking algorithms
were designed and written by M.T., while the interface to collect attributes, select and
display swimming traces was designed by M.T. and written by P.J. in MATLAB 7.8
(MathWorks, Inc.; Natick, USA).

Statistical analysis. Choice, conditioned responses and comparisons between two-
groups were assessed with one-sample t tests. Multiple group comparisons were
performed with one-way ANOVA tests, and maximum performance levels and the
probability of adopting a side-bias ($2 consecutive trials) with repeated measures
ANOVA tests (consecutive blocks of 15 or 30 training units), all followed by
Bonferroni’s post hoc tests. We switched to nonparametric tests (i.e. Wilcoxon Signed
Rank test; Kruskal-Wallis test followed by Dunn’s post hoc tests) whenever the
assumptions required to use the parametric versions were not met. All results are
shown as the averages 6 S.E.M and significance was set at *P , 0.05 or **P , 0.001.
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