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ABSTRACT

For a Rayleigh channel with additive bandlimited noise and time
delay, several types of optimum receivers are developed. These include
the 3-ary case for noise, and forward and backward Barker codes, and the
optimum binary case for signal and noise. Expressions for the error
probability in each case are derived, and the results are compared for
various values of signal to noise ratio. The theoretical realization
for these receivers requires an infinite number of correlators; and
since any physical system can have only a finite number, an investigation
into the effect of this restriction on receiver performance is made,

The concept of receiver 'guessing'" for small signal to noise ratios is
also explored in some detail.

In the optimum binary case the expression for the error probability
cannot be evaluated without the aid of a piecewise linear approximation
to the decision curves, The effect of varying the number of linear seg-
ments in the approximation is examined.

Finally, a simple coding scheme 1s used to illustrate some of the
advantages of block coding as compared to bit by bit signaling.
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CHAPTER 1

INTRODUCTION

1,1 A Problem in Space Communications

The design of an "optimum" receiver for a communications problem is
always dependent on the nature of the channel through which the messages
must be sent. In most cases a probabilistic description must be chosen
since a detailed knowledge of the channel mechanisms are generally un-
known, This is particularly true of space communications where the cor-
rupting effects of the channel may include galactic noise, dispersion,
and scattering, to name just a few, Little of even a probabilistic
nature is known about many of these phenomena, as only a few deep space
probes have been launched, and none of these were concerned pfimarily
with the deep space environment., The Center for Space Research at
M. I, T, is involved in the construction and launching of a satellite,
Sunblazer, whose purpose is to gather information about the space me-
dium itself, This report is directly concerned with the theoretical
design and evaluation of the different types of receivers for the
Sunblazer Project,

Part of the complexity of this problem is due to the fact that the
initial Sunblazer receivers will not have the benefit of any previous
experimental data, Thus we are faced with the case of designing a re-
ceiver which is fairly versatile in its ability to adapt to unexpected
signal conditionms.

1.2 Sunblazer Requirementsg -~ A More Specific Formulation of the Problem

To be more specific, the Sunblazer satellite will broadcast two
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signals at different frequencies., By measuring the time delay between
these signals, information may be inferred about such phenomena as the
electron density of the Suns corona, Furthermore, each time a signal
is transmitted it may take on two forms representing either a binary
one or zero, The Sunblazer satellite will use "forward" and "backward"
Barker codes for these signals, A forward Barker code and its auto~
correlation function are shown in Figure 1, (For a backward Barker
code simply reverse the n-axis in Figure 1).

In order to approach this problem it is first necessary to develop
a general receiver 'philosophy".

(1) The receiver should decide whether m; or m; was trans-
mitted and also the signal delay time. This is the maximum
amount of information which can be obtained,

(2) 1If the probability of making a mistake in determining the data
for part (1) becomes unacceptable, can we look at only the
signal delay (i.e., throw away the telemetry information)
and thus reduce our probability of error? Here we are asking
whether we can reduce the probability of error by not re-
quiring as much data,

(3) Finally, if the probability of determining any data at all
from the signal gets very small, can we at least make a deci-
sion as to whether or not signal is received? i.,e., for ex-
tremely weak signal cases possibly the best that can be de-
termined is whether any signal energy is present in the noise.

The problem is now to design receivers illustrating the character-

istics of each of the above three cases, and then to compare their per-

formances,
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1.3 The Estimation Problem

The most straightforward method for estimating the arrival time of
the signal is to divide the time scale into many little "baskets" and
then check to see into which "basket" the received signal falls, With
an infinite number of incrementally small baskets we could expect per-
fect resolution, However, since no real receiver will be able to use
more than a finite number of intervals, it is necessary to check what
effect this restriction has on receiver performance., It should also
be notaed that this estimation method is actually a detection problem;
since we are really asking, has the receiver for basket number 1 de-
tected a signal?

In the next chapter we will begin to develop the models neces-

sary to proceed with the analysis,
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CHAPTER 2

THE COMMUNICATIONS SYSTEM

Before any further results can be obtained it is first necessary to
model the transmitter, the channel, and that part of the receiver which
demodulates the incoming signals. Then the remaining portion of the re-
ceiver can be designed to give 'optimum" performance with respect to
some criteria, as mentioned in the previous chapter,

2.1 The Transmitter

We wish to transmit any one of my different messages. Each mes-
sage has a certain probability Pj of being transmitted, These messages
are fed into an encoder (see Figure 2) which is essentially a device
which makes a one-to~one transformation between the messages and time-
limited, lowpass signalsl. A sample signal and its frequency spectrum
are shown in Figure 2A, A double-sideband suppressed carrier (DSB=-SC)
amplitude modulation scheme is used which amounts to a frequency trans-
lation of the lowpass signal (Figure 2B)., For ease of analysis it is
assumed that T

J si (t) dt = 1
0

and ETi is the transmitted energy. Thus the signal at the antenna is
cf the form

sO(t) = stTi si(t) cos wp t

1 Since a strictly bandlimited, time limited signal doesn't exist,a
definition for bandwidth that requires that 907 of the signal energy

be between t w is used.
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where wp = 27 £y
2,2 The Channel

The channel model used here attenuates the signal by a factor of
a, 1introducee a random phase angle @ into the carrier, and delays the
received signal by an amount 11, Both 6 and a are random variables
which are assumed to be time-invariant over the period of signal trans-
mission!, Furthermore, the channel also introduces additive Gaussian
noise, n(t). A block diagram is shown in Figure 3,

The obvious question as to what are realistic distributions for a,
6, and n(t) 1is very hard to answer, Over the frequencies at which
Sunblazer is operating (75 mc and 225 mc) the additive noise may be
modeled well by band limited white Gaussian noise?, See Figure 3A,

However, little seems to be known about the form of either the

phase or amplitude distribution. The following assumptions were made;

(1) Random Phase = Slowly varying in time with respect to signal
length with a uniform density from 0 to 2w, This assump-
tion is the result of many physical models, and particularly
of the scattering and long-path-~length models,

(2) Random Amplitude - There is actually very little to go on
here, Scattering models lead to Rayleigh distributions,
which have allowed closed form expressions for the receiver
errors. Results of the assumption of a Rayleigh distribu-

tion show that receiver probability of error is approxi-

mately directly proportional to 1/(sig to noise ratio).

l If this assumption doesn't hold then the whole signaling scheme becomes

ineffective as we shall later see,

2 Gilbert, Some Communication Aspects of Sunblazer, p. 2
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If we assume no scattering of the signal, the probability of
error decreases exponentially with signal to noise ratio, The
actual distribution probably gives results which lie somewhere
between these two cases, Also, the results from the Rayleigh
case don't differ significantly from the Rayleigh plus specu-
lar (direct) component case until the specular component be=-
comes 4 to 5 times larger than the scattered componentl.

Thus for low signal to noise ratios our results should be
reasonably valid, In any case, assumption of this distribu-
tion allows a comparative study of the different receiver
configuratiéns to be made,

Since the time delay 1t 1is also constant for each transmissionm,
and we are estimating its arrival, the detection scheme does not need
any probability information concerning it., However, if an average pro-
bability of error (with respect to time delay) is desired then certain
assumptions about a distribution for <t must be made. But since this
is not critical for the decectioﬁ problem, it can wait until after the
first launch when better data will be available,

2,3 The Receiver Front End

Ideally the receiver output should be a lowpass signal of the same
form as transmitted. However, the transmitted signal has been corrupted
ty the channel so this is generally not possible, The receiver input is

of the form

1 Van Trees, Detection and Estimation Theory
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r'(t) = s'(t) + n,(t) = /EE;; asj (t+1) cos (wgt=-8) + ng,(t)
= {/EE;; asj(t+1) cos G} cos wgt + {JEE;; asj (t+1)
¢ sin wot + ny(t)
From Figure 4 we see that the receiver front end consists first of a
bandpass filter whose output is of the form
r(t) = s(t) + npp(t) (2.1)

In order to simplify (2.1) we express nbp(t) as a Fourier series,

o

n,p(t) = ) (xcn cos nwt + xXgp sin nwt)

n=1

where Xen = %‘[ nbp(t) cos nuwt dt
0
T

2 .

Xen = 7 nbp(t) sin nwt dt

0

Now, rewriting nwy as (nw-wg) + wp we zet
nbp(t) = ne(t) V2 cos wpt + ng(t) /Y2 sin wpt
oo
where ng(t) = /—"f' 2

[%cn cos (nw=wp)t + xgn sin (nw-wq)t]
n=}

oo

and ng(t) = j§= 2 {xgn cos (nuw-wp)t - x.p sin (nw-wg)t]
n=1

The only nonvanishing terms in the sums above are the ones for which nf
falls between - w + f5 and fo + we Thus n.(t) and ng(t) are low
pass waveforms with a frequency spectrum of width 2w centered about
zero, Therefore,
r(t) = /2 cos wgt [a /E;: si(t+1) cos 6 + nc(t)]
+ v2 sin wpt [a /E;: si(t+t) sin 6 + ng(t)]

Nest, using the synchronous demodulation scheme shown in Tigure 4, multi-

plying by sin wgt and cos wpt, and then low pass filtering, we have
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for the receiver front end output, two signals

ro(t) = a JE; s1(t+1) sin 6 + ng(t)

rg(t) = a /E7 sy(t+1) sin 6 + ng(t)

On the basis of 1ro(t) and rg(t) we want to decide which of the
mj was sent, In other words we would like to set the estimated message
m, equal to the transmitted message my.

The key to analyzing this problem lies in expressing the signals and
noigse in terms of a finite dimensional vector space. By using finite di-
mensional vectors we have to worry only about the statistics for a finite
number of components, rather than for an infinite number of times. 1In

the next chapter vector decision rules for the receivers will be developed,




=13

CHAPTER 3

DERIVATION OF THE N-SIGNAL DECISION RULES

In this section general rules are developed for implementing the
first two cases of the receiver philosophy, The third case is an exten-
sion of case two using a block coding scheme and will be considered in

more detail later on in Chapter 7.

3.1 Representation of Signals as Vectors

It can be shown! that any time varying set of signals can he repre-
sented by vectors in an appropriate signal space., Furthermore, if we
have N signals, then an orthogonal basis for this vector space consisting
of & maximum of N vectors can be found, Stochastic processes may also be
represented as infinite dimension vectors using the Karhunen-Loeve expan-
sion?, Thus we would iike to represent the received signals as vectors,
and on the basis of these vectors make the "best" decision as to which
signal was actually sent, Of course, the "best" choice 18 a function of
the assumptions used to generate the decision making rule. An example
of one class of decision criteria, the minimum probability of error

case, follows,

! Wozancraft & Jacobs, Principles of Communications Engineering,
pPp. 266-273.

2 pavenport &'Root, Random Signals and Noise, P, 96. Although the noise
process requires an infinite dimensional vector for complete character-
ization, we are generally faced with having to use only the finite num-
ber of components lying along the N signal vectors., This means an

easier description for the noise than as a time-varying signal,
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3.2 The N-Signal Rule

Assume that the cost of saying message 1 was sent when message ]

was actually sent is Cije Next we wish to design a receiver which will

minimize the total risk, R, defined as

N N
R = Z Z Prob [j sent] ciy Prob (say 1/] sent]
i=1 J=1

Using a decision space modell (see Figure 5), we can represent
P [say 1/j sent] as
R -
f Pz (mj) dR
Zi m
where r is the received vector. Calling Prob [j sent] Pj, we have
for the risk:
N N 2. -
P = Z z Pj Cij I Pi (m-j-) dR
i 1 j-l zi m
Now lets choose the cost equal to one if we make a mistake (i.e., say 1,

when j was sent) and zero if we don't make a mistake (say i, when 1

was sent).

0 i =
Let cij = {1 i4 g

Then
N N i -
R~ 1 ZPJIP;(;j')dR
i=1 =1 zy o
ity

But this may be recognized as Prob [making an error] = P[E]

P[E] = 'i f 1 Py P (%) dR

! van Trees, p 12,
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i = N
Let I;(R) = ] Py P- (f—) and P[E] = § f I;(R) dR
=1~ 1=1 5,

j#i
To minimize P[E] we should assign each point in 2z to the zj
which minimizes expression (3.1) for P[E]. Thus we have the decision
rule:
For any R
1f I;(R) < I,(R) and I3(R) and . .. IN(ﬁ), Choose m

Iz(ﬁ) < Il(ﬁ) and I3(§) and . . . IN(ﬁ), Choose mj

Iz(R) < I;(R) and I,(R) and . . . Iy.j(R), Choose my,

Hence, the decision rule is to choose m, as the message trans=

mitted if

I pypo(35) < ] PyP-(S5) forallk#d
j-l T—n- j j-l 'm' j '

2! Jfk

Expanding and canceling out common factor we have

R R
Py gi (mk) < Py Pi.(mi) for all k # 1
m m
and dividing by P;(ﬁ). ;The decision rule simplifies to choosing mes-

sage my if and only if

R R
Ptz () purp ()
T < 2 for all £ ¢ 1 (3.2)
P=(R) P=(R)

Or, to state this more compactly, set ﬁ, the estimated message, equal

m
to my if and only if Py P (—%) is a maximum for i = j.

8

e}
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Although this model does lead to the smallest possibility of making
an error it is somewhat misleading, since to realize this performance we
need to know the a priori probabilities, Pj, and the costs 44 exactly.,
This restriction, however, can be minimized by varying both Pj and cij
and calculating their effect on P[E]., Alternately, there are other test
procedures which do not require this information, such as minimax tests or
Neyman-Pearson tests!, but these usually produce larger values for P[E],
or maximize other quantities of interest such as probability of detectionm.
llowever, since P[E] is a good measurement of the performance of a com~
munication system the first approach will be used here?,

3.3 IThe Binary Decision Rule for N-signals

Next we would like to specialize the result to the case where no
penalty is incurred if we confuse any of my through m, with any
other my through my. The only cost occurs if we mistake m; for
one of the messages my .to mpe. This will allow us to investigate
case 2 of the receiver philosophy; since by setting m; equal to noise
then we are asking the question is there signal or noise present,

We now have a binary decision problem. That this will reduce the
probabib@ty of error can be seen if we observe that additional cij's
are now set equal to zero, and so even if we fix the I(ﬁ)'s, the risk,

R=11P4ecij J Iy(R) dR
St

| Hancock & Wentz, Signal Detection Theory, pp. 35, 40, 43.

2 We shall see later on that by developing the expression for the minimum
P[E] case we have practically all the tools needed to evaluate the

other cases if we desire.



-18-

will decrease., The optimum rule does even better by not only making the
additional cij's zero, but also by adjusting the I(R)'s to make the
integral in each nonzero term a minimum,

Let cjj = 0 i=3 or {3 : i simultaneously}

cgj = cj1 = 1 J = 2,3, ¢sepy n
therefore
N R - N R -
PIE] = ] Py J P= (S5) aR + ] Py J P= (==) dR
J:l - j 1-2 - ml

21 m Zi m
S Ry .= Ry .=
-f ZPjPi(;j-)dR-i-J P‘Pi(;f) dR

z; 3=2 m R m

{=)

3 R ) o8
= f ! Py Pz (ﬁ) dR + J Py Pp (E-) dR
) j‘2 m z--z.1 m

Then the decision rule to minimize P[E] 18 to choose;

N -
one of mp through m, sent, if z Py P2 (;%j-) >P) Pg (;RT) (3.3)

3=2 m m
or if ? Py P- (—E-) < P) P- (i)
mj, 3 L mj 1 L ‘m
=2 m m

Both equations (3.,2) and (3.3) depend upon Pj which we have, and

P- (=) which must be calculated.
my

a1

In the next section we shall calculate P; (ﬁl) for the channel
r 'mi

model developed in Chapter 2, m
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CHAPTER 4.

P (i%) FOR THE RAYLEIGH CHANNEL

m

As mentioned earlier the key to analyzing this problem lies in ex=-
pressing the signals and noise in terms of a finite dimensional vector

space. The 1th signal may be represented as
N

si(t) = Z SKi ¢ () or ;i = (8)14s o o o sNi)
k=1

where T

T
8ij = J s1(t) ¢3(t) dt  and J ¢ (£) ¢4(t) dt = &y
0 0

We would also like to represent rc(t) and rg(t) as vectors so
we may apply the results of the previous section, Taking rc(t) first,

we find ;c = (rcl' Tc2 o o o rcn) by

T
Tey ™ I ro(t) ¢4(t) dt
0 .

[a VET, 8, (t+1) cos 6 + nc(t)] ¢4(t) dt

[}
O —

T T
N
- a /ETi cos © I kz 81k O (t+T) ¢5(e) dt + I ne(t) ¢4 (t) dt
0 =1 0

T
N
= a YEp,; cos @ Y ek J ¢ (t+1) ¢j(t) dt + I nc(t) ¢j(t) dt
]

k=1 0
;. N
= a YEpy cos © ! sk Rgj (1) + ncj
k=1

T
where Ry4(T) = J or(t+1) ¢4(t) and ncy - T nc(t) ¢4(t) dt
0 0
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In a similar manner we may find the components of rgy of the vector
;S - (rﬂlo £82 ¢ o rsn)

N
rsj = a VETi gin 6 z sik de(?) + nsj
k=1

Expressing these equations in terms of matrix notation we have, for the

vectors, the following

Tc = a VET{ cos 0 84 R(1) + n¢

rg = a YEriy sin 6 84 R(1) + ng (4.1)

Ryp(t) + « « Ryn(O)

R(t) = | ¢
RN1(T) o o o Ryy(T)

It is interesting to observe the effect that the channel and demodu-
lator have on the "transmitted vector”. For example, the vectors shown
in Figure 6A may be mapped into those of 6B. The random phase and am-
plitude simply cause a scaler multiplication of the receilved vector while
the time delay T gives rise to a linear transformation. This transfor-
mation actually rotates the vector in the signal space. Finally the
Gaussian noise effectively adds a random vector to the rotated signal
vector as shown in Figure 6B,

One further step remains before we can actually calculate P- f%]

m

end that is to calculate the statistics of Ec and ;3.

It may be shown! that n.(t) and ng(t) are Gaussian processes

with:

! Wozancraft & Jacobs, p. 496,
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w
No No
E [n.(t) ng(t-1)] = Re(r) = J = cos 2nftdf = e sin 2mwt (4.2)
-w
Y Ng N
E [ng(t) ng(t-1)) = Rg(t) = J = cos 2nfrdf = Eﬁ% ain 2mwwrt
-w
Ng
- |f] <w
E [nc(t) ng(t-1)] = Reg(r) where s, .(f) = spg(f) =( 2
=0 0 elsewhere

Since ns(t) and nq(t) are Gaussian processes then

T

Nei = j .nc(t) $41(t) de
0
T

ngg = J ng(t) ¢4(t) dt
0

are Gaussian random variables. In order to find the joint distribution
of the n.y's and ngi's we must determine the following:

E[nci] = J E[nc(t)] $4(t) dt = 0
! .

T
Elngi] = J Eln,(t)] é4(t) dt = 0 (4.3)
0

1, T
Elngg ney) -U E [ne(t) ng(u)] o{(t) o4(u) dt at

0
T (T

= J f Reg(t=u) ¢4(t) ¢j(u) dt du = 0
00

T (T

E [nci neyl = J E[n () nc(u)] ¢1(t) ¢j(u) dt du
L,

0

0
T,T
- f Re(t-u) ¢4(t) ¢4(u) dt du
c 0 ‘

Then, using (4.2) we could solve for E [y “cj]‘ However, this is a

complicated expression and is dependent on the choice of the ¢J(t).
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Since n (t) and ng(t) have a power density spectrum which is equal

to Npo/p for - w < f <w, the signal spectrum, we can assume the power
spectrum of the noise uniform for all f because of the fact that out=-
of-band noise doesn't affect the performance of an optimum receiver!,

This makes Rg(t=u) = Rg(t=u) = up(t=-u) %; and simplifies (4.3) consid-

erably:

T T
E [ngg ngyl = J J
0 ¢

rop=

N
ug(t=u) ¢4(t) 5 (u) dt du = == 64

Similarly

2,

T T
No
E [ngy ngjl = J J 7; up(t-u) ¢1(t) 93(u) dt du = == 644
0 0

Thus ngy, ney (1 = 1,2,...,N) are statistically independent random

variables and have a joint distribution,

PnCi « ¢« o Nepy Ngd s ¢ o Ngn (aCi e« s« o agcns bBi P bsn)

1 .
1 --ﬁg(agi"'oo+8gn+b§i+o-+bgn)

e
(nNo)N/z

or, in vector notation

Phis Bs (uy V) = Pgc(u) Prg(V) =

1 - -
. 1 [- == (Ju]? + [v]|?)] (4.4)
N2 e N
("Ng)

We are now in a position to calculate P; (é%) .or, for this specific

- - m
case Pfc . RcsRg

()

l Theorem of Irrelevancy, See Wozencraft & Jacobs, p. 220. Sufficient -

Statistics. See Van Trees, ps 33.
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Introducing the following definition to simplify notation

C (8 e [ b - (2R) porDy 4T = po (=BT
Pg_ (S) J P=_a= (b,E) Py(c) dec P__L (G,E)
B - BIY B.;

we have}

R. R R.,R
Py ¢ ( Cy 8) -Pp = ( cslg \6,a
csfs * my crIs ‘m{,0,A

m m,6,a

Now if T, = a and ;s = B on a given trial, then
Ec = a - a YEpq cos 8 ;i R(7)

ng = B - a /Ey sin @ 84 R(7)

and we may write

- . (2\9 \ _P
s \me,n Ney 1y
T\'\,C,Q hl‘\“‘

5 (‘2 -AJEicose3; Rim , §-AlEsine S Rin )
: CWN)

(1- Al coses Rin, §- AlEnsmes, §m\ (4.5)

e N

where the last line is justified by the assumption that ﬁc, 58 are gta-

tistically independent of m, ©; a. Substituting equation (4.4) into

(4.8) we have

————— - - v\
[’NA 11.: 3 ) > L . R- L (- Al cos o5 Rim) - (F-AfE smotikim)
—— W9, \ Ia N.

e, (TN

(M. 6)
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Expanding and factoring out terms which do not depend on i we have,

for the right side of equation (4.6):

- - - -
. +,,_“J'E-1L\-_§;§\1);.Tcose +'§(lh\‘!?s\no - A B SiRRS, INe
| {ER Y

The probability distributions for a and 6 are Rayleigh and uniform

respectively (see Figure 7).

A2
P_(A) --f‘fe’zyz A>0
1
pa(e) = o 0<6 <2n

Letting k(a,é) = k, and averaging with respect to 6 and a gives,

Pr s (2t
T3NT} ™
.

wm
+HA Iﬁ;{?gimﬁ' cose + S;RvY e’ smo}

14

"
P

Q Q

| g MRRmERE ‘XPAA\ Pol01dAde

wre AR -~ o7 T e =T =T g
\ .}‘Mfﬁ(s‘- RN 050 + SiRM B smo‘} - a. Er SiRERIMYS; - %i‘
T — fe * dAde
amy?

L)
[

Transforming to cartesian coordinates by the following change of variables,

x = A cos 6

y = A sin 6 dxdy = AdAd6

we have;
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w o -.- -1
2R + 3 Ve ES-JU\'&TX s §;im'g‘ﬂ - LX‘fy‘“En“ l:\. RS, # )
) )5 dXdy
- . X Eﬂ?{k\'ﬂi{‘ﬂ-sz 4 lﬁﬁtgi ﬁ\q\l’lx "
_ £ LETS
T ) A - dx

YEpLRwRmE | qJ‘e‘;LB‘eme ¥
. 2 N, Ne 1‘1 AY

- ®

These integrals are modified forms of the Gaussian distributions and

may be evaluated to give

PE_ (—_d". ) = Rk AXP )CY- | (4.7)
“\, E . - i T < T '
he = WSRe @RISC +1 \_&&Imﬁm‘il N+ Ne /o

where  X{ = (5 R @) + 3 Tnd) .9)

x% has its maximum value when 1T, the relative delay between the
incoming signal and the correlated signal, is zero. This allows us to
estimate the arrival time of a signal as the moment when xi is the

largest., At this instant xi = (Ei °c a)? + (Ei + )2 and
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-
1]
-yt

(LE ) - A le X': ( Ew )
¢yl i - H.q
e~ Eaay, | Nt s e | (W)

where Ei « a 1is the correlation of sy and a; IT s4(t) a(t) dt in

terms of the time varying signals. 0
Once we assume & signal has been detected we also wish to determine

which of the m4y's it was. By substituting (4.8) into the decision

rules of the previous section we see that N-ary decision rule becomes:

choose m = my, iff P A4 eBixi is a max for 1 = j where

Ay = o
Ep
—— 2
(No) 2y- + 1
Ep

PL = WoEr, + NY/272

While the modified binary rule becomes;

choose my or m3 or .+ « o o,

N By 2
iff ] PyAyed *I>pia e
3=2

B, xi

otherwise choose m;, A receiver which will generate the estimated mes-
sage is shown in Figure 8., The fact that in practice only a finite
number of correlation devices are used, may lead to a case where the
maximum value of xi will not occur when <t = 0, Note that by using
multiple correlators the value of T is now used to indicate the miss

time by closest correlator. This is just another way of saying, what
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happens to the probability of error when the receiver misses locking onto

the received input by 71 seconds, Numerical values of error probability

for various 1's are presented in Chapter 7.




=31

CHAPTER 5,

DERIVATION OF THE STATISTICS OF xi

After developing the decision rule for an "optimum'" receiver, the
question arises as to just how optimum the receiver really is., An
answer to this question requires the calculation of P[E] for differ-
ent values of ETi’ Ny, and 1. The only additional information needed
to make these calculations is the statistics for the xi.

We have two cases, the statistics of x% when message my was
sent, and the statistics when message mj (] ¥ i) was sent,

Case 1 - given my was sent;

el

= a VETi cos © Ei R(1) + ng

wi

= a v’ETi gin 6 ;i ﬁ(r) + ng

;i = (a * 54)2+ (B * 512

- - - -T- - -
(¢ * 81i) = a v’ET1 cos 8 (si R(1) siT) + ne siT
N

by + 2 ncj (Si)j
i=1

Ig
bi + Ne 84
bt o

where ncj are independent zero mean Gaussian random variables. Since
(E . Ei) is the sum of Gaussian random variables, then it also is a
Gaussian random variable. Thus in order to specify a * Ei completely
we need only find its mean variance

N
E[a+ sy) =by+ | Blnc,] sij = bg
i=1
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N N N

- - 2
[& . 54]2 =bj +2b; ) ncj siy + 1 1 ncy Mk Sif Sik
i=1 3=1 k=1
L ) N N N |
E[a+s§]2 =01 +2by ) L [ncj] siy + ¥ ] E [ney nekl s1j sik
j’l j'l k=)
N N
2 2 2 2, No 2
=bj+ ] of siy=bi+—5 1 sij
j=1 =1
. 2 No
Since we have, from equation (4.3A), that E [ngi ncil = oy 81k -5 S4k
Therefore,
- Ng B
2 . . = . 2 . (E@G ¢+ 51]2 = — 2
I E [a ¢ s4] (ECa * si] 3 ! osiy
=1
No ¥ 2
PG TN CL T L)

T
bj = a VETi cos © Ei R(1) Ef:
where N(m, 02) is defined as a Gaussian random variable with mean m
and variance o2

Similarly:

T
(8 ° Ei) = a /ETi sin © (Ei R(1) EE) + ng * EE

N
y ) o N(ci.jg ) sgj)

=

P(B' 84

T
cy = a /ETi sin 6 sj R(1) EE

lience xi is the sum of the squares of two normally distributed variables

of different means and the same variances., From Papoulis!, we have that

if x is N(n,, o2) and y is N(nz, 0?) then w = //xz +y2 is

-(wl 2 2
e (W€ + n¢) /20 I, (!%) w> 0

w
Py(w) = pr

! papoulis, Probability, etc, p. 195,
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/ a 1 [*™ x cos ®
where n = n{ +n3 and Ig(x) = T I e de
0
R
m=g 22%(n1)?
We want 2z = w2, therefore
1
P, (2) _d_zpw(/z_)
dw
Y
1 ~(z + n?)/2 z'2 n (5.1)
= 202 e Ip ( 02 )

Letting x-5°-s'i, y-6°§i, z-xi, n, = bj, and np; = c4, we

may use (5.1). Then

n= /bi + ci - /32 ETi(Ei RT(1) 51T)2 (cos28 + sin2e)

- = T .T Ng N 2
= a VYEp, 8j R(t) 84 , 0% = e )) Sij4
=

2
So, if my was transmitted, the probability distribution for the xy

isj

2 [+ @en Gkl V) 22" aVE S R3]
» —_—1 -
P!"%\ ( \ No %Su XP N’%u S;, Io N°%-S'.\

i IS

220

Case 2 - given my was sent;

Qt

= a "ETJ cos 6 Ej ﬁ(r) + Ec

wl

= "E'I‘j sin 6 Ej R(t) + ;15
Proceeding in the same manner as before we can derive the distributions

for P(u .3 )(x) and P(E . -s-i)(x)

(5.9)



Iy 7/

N
PG 5p® =N @, F T siy

N 2
P(E . ;i)(x) = N (eq, > Z Sij)
with
- =T 4
d{ = a VETj cos 6 s3 R(t) T
ej = a ETj gin © 31 §(¥) 8§

Thus, when m is sent, the probability density function for xi is

Pe (&) ——xp [ e GRwE V) T 12" 0V SR (£3)
NI No 2} L
z - 3
250

It is easily seen from the derivation of these results that the
Pxilm(z/mk) are independent whenever an orthogonal signal set is chosen.
Furthermore, the above equations are valid for unequal signal energy,
random carrier phase and amplitude, and arbitrary signal crosscorrela=-
tion functions. Thus, in theory anyway, one can set up the decision
regions and evaluate the P[{E] for any orthogonal N-signal receiver!,

The next chapter is a specialization of these results to the Sunblazer

signal format of two messages and noise,

1 Many times the expression for P[E] contains integrals which require

a numerical solution,
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CHAPTER 6.

SUNBLAZER SIGNAL ANALYSIS

The Sunblazer receiver is faced with making a decision as to whether

m; (a binary zero), m; (a binaxry one) of m3 (nothing) was transmitted.

Using orthogonal signals we have

m ny m3 (noise case)
s; = (1, 0) 8, = (0, 1) s3 = (0, 0)
E = B E = E E =0
T, T T, T T,
P[m] = P P[mpo] = P P[m3] = 1 - 2P

The signal space is shown in Figure 9, Since, to a good approximation
the forward and backward Barker codes are uncorrelated we have for the

crosscorrelation matrix, the form

R(T1) 0
R(t) =

0 R(1)
Next lets look at the rules for this case.

6.1 3-Ary Signal Rule

From Chapter 4 the decision rule ig set m=m, if

2
Py Ay el *1 < pyoay el M

for 1 ¥ j (6.1)

P, A B !
1 41 * ) S N2 /92
ZFT 2 41 NoET + N§/2y

Ng

P, A o —— B °T
2 A2 =g 2= Z/ov2
g X 2+ 1 NgEqp + N§/2y
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P3 A3 = k(1 - 2P) By = 0

Defining B} = B, = B, A = A = A, and Q= PA/l_P we now can solve
2
equation (6.1) for x4

n Py Ay + By xj > 1n Py Ay + By xi

a B, 1 BA ya1,2,3
"J’Bj"1+sj Py Ay j='l,2:3 143

These rules can best be summarized by the diagram shown in Figure 10,
Note that this diagram applies only to the case for Q < 1 where point

1l (see Figure 10) is greater than zero. More will be said about the case
where Q > 1 1later on. In order to evaluate the probability of error we
use equations (5.2) and (5.3). The calculation is most conveniently done

in three steps by calculating the individual probability of errors for

the cases when mj,'mg and m3 are sent.

6.2 Probability of Error Given No Signal Present, §3 = (0, 0) ET3 =0

2 2
The receiver makes a mistake in the event that the point (x;, x3)
lies outside the shaded area in Figure 11. When no signal is present,

2
x1 - nc% + nsi

2

2 2
note: x; and x; are independent
X2 = n¢

2 2
2+n52
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and from equation (5.2)

l -ZI/N

Pxf(zl) = ﬁz-e 0 z, >0

2 Lz
Px? (z2) = N © 2/Ng z; >0

then
P[E/,] = Prob [Error is made/given noise only]
= 1 - Prob [Correct decision/given noise only]
=1-"P [c/n]

The event P [c¢/n] 1s shown in Figure 11.

~dnQ _inQ
P [c/n] = J B b Px,(z1) Px,(z2) ds) dz; 0 <1
0 0

- inQ

2
-'[J B -ﬁ-a-e- z/Ndz]
0

= [1 - q*/BNoj2
Defining D = /BNy
P lnl =1- (1-Q)2
=200 - @?? for Q<1 (6.2)

6.3 Probability of Error Given m; was Transmitted, s, = (1, 0), E'I‘1 = ET

2 2
If m; was transmitted then we make an error if x; and x; lead to
a point outside the shaded area in Figure 12, With signal m; present
then

2
x] = (a VET cos 8 R(1) + n¢;)2 + (a /ET sin 8 R(1) + ng,)?

2 2 2
x2 = Ac; + ng)

2 2 .
Note that xj; and x; are independent random variables. Substituting

into (5.2) for x% and (5.3) for x%,
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z, + a2 ET R2(1)] 2zY2 a JET R(1)
Pxi(zl) = -ﬁ]io- exp [— L2 N, Ig z ;0 1 (6.3)
2 - _Z227 2 >0
Px1 (22) NO exp [ NO] zp > 0 (604)

Then, averaging over the random amplitude (note the phase terms have al-

ready cancelled out) gives

® g, o
P </m) = 3 sz () 5 P (2 d2, |de
3,: In@ 2,00
A _ ﬂ’/a:‘l o =
| &2 Pa@ | | Pa(eade |de,dn
° 2:-Iag
! ry 10
*® - 2 %
A - ﬂ/r‘t
. -Yi 2 PX? (&.\_ aﬁ % Px,‘ (21\ d?-L d%‘
2 _1"_.\2 ° Ao
8
o 2\
[+ ¥
2 dz, Px, (2) P,; () 4z,
i‘ - lﬂ_\e-_ 3,0
B

(6.5)



where

a A 2,,.2 p 2

A - A P.<(a) dA
Pxi(zl) - f y2 e /2¢ X
a=0

We would like to evaluate this integral and then substitute 1t back into

(6.5) replacing

© R 1— “‘/Q“‘ Q—‘\/N. -A E‘Rl(“/NQ I a-‘l‘ﬂ ﬁ1 RQ‘)
= oY 4 e N,
Ao (6.6)
But Ip(x) can be expressed in terms of an infinite series of the form
i} £x22k
Io(x) z (k1) 2

k=0

Therefore, (6.6) becomes

13
- 4 A Pae [ 2y, -RFERUD/Y, i (2¥*AJE Rm/ N.\‘ dh
| el g kY

Aro Keo

S. 2—'& 2. Kw E (2" A JEy Rim /NG
) A«o N.Y‘ keo

(kY
(6.7)
Et R%(7) . =L

and wv = No 2Y2

Interchanging the integral and summation signs of (6.7)

1
© -z, /N k VBT R(x) .2k 2
e "1/Ng 2 T Rt | 2k+1 _=wA
) No v2 ( No ) (k1)? J A ¢ an

k=0 A.o

Ttis integral is straightforward and the expression may be evaluated to

glve
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- k
32 P (2.&&’@), L kL
NoC \ WG (R} aw
keo

“& /N, b

‘a KZ‘ E1 R‘('ﬂ )k _l_
IW No X? Z}m WK R!

- 1 T 2 - —Wr-E R‘m
i o 2 3 sz. tn ) ‘ - l‘/No(‘ v . \
TWN, ¥* T AW NV

(6.8)
Substituting w into (6.8), multiplying out terms and then recombining

we have for Pxi(z)a H

Px%(zl)a = Noc © Noc
E
with ¢ = Z(E%) y2 R%(7) + 1

Using this result with equation (6.5) and rearranging gives

oo

zomzy | _ L _Z2
P [c/ml] = [ J E;Z e Ngc Ngdzp dz; Q<1
1ln

which may be evaluated, with D = l/py,, as

1/
P [c/py] = Q¢ - i QU

D(e+l
P[E/mllﬂl-QD/°+—tc Q<1

C+l

Q<1

(e} 9

6.4 Probability of Error Given my transmitted sz = (0, 1), ET2 = ET

2 2 .
The receiver is incorrect whenever the point (xj, x2) 1is inside

the shaded and dotted areas in Figure 12, When m; was transmitted



x% = ncf + nsf
x% = (a /E; cos 6 R(T) + ncz)2 + (a JE; sin 8 R(1) + “32)2

and proceeding as in the last section

zy >0

Pxf(zl) = ﬁ%-exp [~ zl/NO] 2y > 0 (6.9)
(z2 + a? Ep R2(1) 222 a VE7 R(T)
Pxi(22) - ‘1\%; EXP[- 2 No L ] Io[ Ny L (6.10)

But it may be observed that this is the same problem we just finished

solving in the previous section if x% and x% are interchanged. Thus,
D/e , 9 D(t:fl)/c Q<1 .
C+1

6.5 Total Probability of Error for Case 1 with Q £ 1

P [E/mpy] =1 ~Q

The total probability of error is defined as

3 .
P[E] = ] Plmg)] P [Efp,] (6.11)
i=1

Substituting our previous results intolb.\l) we have for the case 1 prob-

ability of error the following expression

D(c+l)
PIE] = (1 - 2p)(2q° - Q*D) + 2p (1 A Q<1

(6.,12)

where

P

Q- ET 2 p2
(2 T YR (1))@ - 2P)

D=1+ é
2T 2
2 (57 v*)

E
c =2 (E%'yz Rz(r)) + 1

As mentioned previously this result 1s only valid when Q < 1. In the

next section we look at the case when Q > 1],
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6,6 PIE] When > 1 and Summary of Results

When Q < 1 point one in Figure 10 moves to the origin (it cannot
go negative since x% > 0) and the decision space is shown in Figure 13,
Note that the receiver will never say noise when Q > 1., This interesting
phenomena will be examined in more detail in Chapter 7. Using the same
definitions for P[E/mi] as in the last section we see immediately that

P[E/pl = 1

When m; is sent, the statistics of x% and x% are given by (6.9)
and (6.10). An error occurs when we say my rather than m;, even

though m; was sent
@ ©) a

2 2 I
J J le(zl) Px2(22) dz, dz;
z21=0 z7=2)

-] ©o
—_— 2
= J J Pxf(zl) PX2(22) dz; dz;
2170 275
= TL— e Nge = e Ng
Nge Ny dzy dz;

By utilizing symmetry it can be shown that

1
P [E/p,) =P [E/my] = T3 T
Therefore, the probability of error whem Q > 1 1is

N
PE] = ) P [mi] P [E/p;]
i=1

=1-2pP+2P (3 i =) Q>1
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When (¢ >1 we have

P

E >1
(1 - 2P)(2 == v2 + 1)
Ny

or
Ep
2T Y2+ 1

>
T 2
4 No Y< + 3

E
All the previous expressions can be simplified by observing that ﬁ% y2
is actually the average received signal to noise ratio, which will here~

E
after be designated as E% + Summarizing the results for case 1 we have,

when ER
2=+ 1
p<_No °~ (6.13)

Eg
4 Yo + 3

D(ct+l)
P [E] = (1 - 2P) (2Q° - sz) + 2P|1 - QD/c +Q ¢

c +1

or when

P [E] = (1 - 2P) + 2P (c i 1)

where
Q= L
2 ER Ly - 2p
@+ DA - 29
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6.7 Modified Binary Decision Rule - Case 2

By removing the line separating the decision spaces of m; and m
in Figure 10 we can develop a binary decision rule. (See Figure 14).
We know that the optimum receiver will do as well as or better than this
case since an optimum receiver, as the name implies, is the best one can
do., The reason, however, for examining this case is twofold; first, it
allows a check on the considerably more complicated optimum case and
second, it presents a contrast to help decide what factors are most im-
portant for optimum performance.

We will follow the same general procedure for evaluating the perfor-
mance of case 2 as we did for case 1.

For Q <1 it is easily seen that P[E/n] 1is exactly the same
for this case as for case 1 and is given by (6.2)

P (E/n] = 20" - ¢** for Q<1
When m; 1s sent the receiver makes an error if the point (xf. xi)

lies inside the square of Figure 12, Then

_in Q _in Q a
P [E/mll - f B Px%(zl) dz; f B Px%(ZZ) dzo Qx1 (6.14)

11-0 0
where Pxf(z) and ng(z) are given by (6.3) and (6.4).

Rearranging (6.14) gives

_in g _ingQ

P [E/m ) = f B Py2(2))® dz; J B Pyp,(22) dzz Q<1
0 0
- i&:l El— iﬂ—g Zs

= J EEE e Ngc dz; j == e Np dz3
0
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Again it can be seen by symmetry that P[E/mZ] will be the same as

P[E/mllc
P [E/p,) = A -y - o)

Finally when Q > 1 then the result is fairly obvious, since the
receiver only guesses signal and therefore will be wrong anytime only
noige is present. Therefore,

P[E/f]l =1 for Q>1
Using the fact that P [E] = E Pimy]) P[E/m1] and collecting re-

i=)
sults we have, when

P[E] = (1 - 22)(2Q° - @*D) + 2p(1 - Q®) @ - Q¥/¢)

or 1if

E
2 (j5) + 1

ER
2 (io-) +3

P >

P[E] = 1 - 2P
where

Q- P

E
(2 (i%)“) (1 - 2p)

D=1+ __ 1
ER
2 ()

c = 2*(%%) R3(1) + 1

6,8 Optimum Binary Decision Rule - Case 3

In this section we design the optimum receiver to decide whether only

noise is present or whether either message m; or mp was transmitted.
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The first step involves calculating the decision rule and space using
the results of Chapter 4,
The decision rule is

Bx2§
2 § 1-2p

2
AP * +are
Where the notation indicates to choose signal when the greater than
equality holds, and noise when the less than does.

Solving this equation for x% gives

2
281 1 - 2P B
X2 2§ in (-—;;—— - e xl) (6.144)
N
As before we let Q = E%%F

and so the decision rule becomes

2

281 1 B x3

x2>—ln(—-—e )
N

Since this function has a positive second derivative it 1s concave down-
wards, The decision space is shown in Figure 15, For convenience we de-
fine the intercept of the curve and the x% axis as G which makes

1
G==-1
Q

Thus the optimum receiver for the binary receiver 'guesses' when Q :g%.
rather than ﬁhen Q £1l, as was the case for the previous receiver,
.Unfortunately, applying directly methods of solution used in the
last two cases leads to integrals which cannot be evaluated in closed
form, Dne’apprpach is to "linearize" the problem by making an N-segment
precise-linear approximation to the curve and then allowing N + «, The
piecewise linear apﬁroximation is shown in Figure 16, Next let's focus
more closely on the ath segment and determine its slope and intercept.

Referring again to Figure 16, we see




~53-~

1 1 ntl
c =% 1n fa -G N )

Using the standard slope~intercept formulas the nth segment's equation

is of the form x% = m(n) x% + k(n) where

1 1Y
N -a—GN
In G

m(n) = - 1In (6.15)

and
1 L_gyptl
k(n) = ) 1n (Q ) (6.16)
1 ntl n
(-¢ W)

-

6.9 Case 3 - P [E/noise] Q < 1/2

Referring to Figure 15 we see that the receiver is incorrect when-
. . 2 2
ever noise only is present and the point (x;, x;) 1lies outside the
2 2
shaded area. The statistics for x; and x; are the same as the noise

only case in the last section,

z z
2 Lo % ply) ke T
le(zl) = ﬁ;=e No Px2(zz) = N e Np (6.17)

The expreésion for P[E/noise] can be broken up into two terms, area 1
(see Figure 16) which is the sum of all the contributions lying above the
linear segments; and area 2 which is the region above the xf-axis extend-
ing from x% = %-ln G to «, With P[E/noise, N] denoting the N-segment

approximation to P[E/noise] we have
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o o
P {E/MO\SE,:X = Pﬂ' L%\\ di\ Pf‘ kit\di‘
nG )
)
m
Nt _N%hs )
Mo m MR, 4 Rum
ii »“G 4 )}
(6.18)
Substituting (6.17) into (6.18) we have, for (6.18)
© ® L \
_‘/“. i.fl;
PY_E/M\“,;) = -‘—; g 2 ) d%\dit
. N. nG Jo
[ )
N-1 LETR PN -
T Bt
4 N L dr.de,
oo -:-‘; LY T R (L

(6.19)

Evaluating the first double integral, and the inner integral of the second,

equation (6.19) reduces to

L - jym B e S/, (e}
3 - E £ i 4
P"/\\o\st,:x= G 4 No £
Mm

0 Lne
NS (6.20)

The integral in (6.20) can be evaluated straightforwardly noticing that

we have two cases, when m(n) + 1 = 0 and when m(n) + 1 $ 0
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}EL)MG mmi+t =0

LAY PN
NG
_‘\IN.(\ + MV'\\
£ A2, = N. B (TP Y VIV IRV TPATNL § U S\ VW
LIS PX -
Y Y ¢ |
mimil#o
1 ntl Dn
Defining T(n) = 06 B ) (6.21)
n_ D(ntl) )
(% -c61)

Q

Then (6.20) becomes

DTG  jiwyry = o

N
N-y
P hos)s G+ D
nowst ,N | 3 —  mum il dm )y T TYDURAD
M=o _m G G MUY\ O
AunY & 1 -

where D and G are defined as before,

6,10 Case 3 - P[E/mi]. Q -5_1/2

Since P[E/m1] = P[E/mz] by symmetry arguments only P[E/ml] will
be derived. It 1s somewhat easier to evaluate the integrals for this
case if we find, instead of P[E/mll.

Plc/m,] = P[correct decision/m sent] = 1 - P(E/m,]

Since we are finding Plc/p ] the space over which we integrate is

. . 2
the same as the last section, The distributions for x% and x7 are
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) a 3 .
le(zl) = EEZ e Ngc 2z, >0
Z2
Pz(z)-‘i-e-'N_ zo > 0 (6.22)
X»o 2 NO 0 2 4

The expression for Px%(zl)a is given instead of Px%(zl) since

it can be shown that any derivation for P(E) uses Pxi(zi) only in the

form Pxi(zi)a + Breaking the integration into two regions to take into
account the contributions of area above the curve and above the x% axis,

and then averaging with respect to the random amplitude we have,

b Aco T M e
' A}
o Q* Qb -
N-\ []
} z Pe @) K Patandz, |de, Pulmydn
' InG Ty AR, 4 RUNY

Meo Aro !‘t 1.}

R

Rearranging the integrals and using the definition of Px1(zi)a

gives
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P (C/,‘“‘ );l = P‘n‘ klss P'ls‘{ kzt\dii
= ,‘—%& A Y
Not um;:hc ‘
+ E P,; \1,{ g Pyt (24 a3,
mee /3 .ming L
L

(6.23)
Substituting equations (6.22) into (6.23) and collecting terms
o L T
PYC/ i | ~t, (B4
h\" N b T L A% \&‘1
me ), NoC
)
ot W*‘:hb o
\ L”b’ \1& * 1‘\
+ e ddz,

Mo %‘.’ MMURYZ, 4 RUN

Evaluating the first double integral and the inner integral of the second

leaves us with

+1 M(,
Spe & owe W R oy
P ["/«M,N-l -G+ e et da,

M=o Mo
NS

(6.24)
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The remaining integral in (6.24) has two forms depending on the value of

m(n) + 1/c.

2&’1«\(‘: mimy+ Y =0
CN

LA
i 3] Y‘/c + m.uml
N,
£

\
NoC d?, =

min G - [y muYdUnaD
e | - {4 muxIpm G

NG
Mtm)C ¢

mim & "C +0

Using the above result and equations (6.16), (6.21), and (6.24) gives

T DG Yo
N
¥-i
‘ i 773
PY_C/“\.,;\" G + z Tim U mumcIdm e -Damume 1 Dman) Jue
MzoO : _
MO+ Y

(6.25)
Note that the expression in equation (6.25) also represents P[c/mz, N]
as mentioned earlier.

Now,

3
PIE/N] = ] P[E/my, NJPCws)
i=]

= (1 = 2P) P [E/noige,N] + 2P (1 = P [c/m;,N])

As remarked before, these equations hold only when Q<_% or
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6,11 P[E] for Q > 1/2 and Summary of Case 3 Results

When Q >-% the receiver will always sa& signal., However, with
probability 1 - 2P only noise is present at the receiver input. Thus,
the probability of error is 1 = 2P,

P[E[ =1 - 2P
Summarizing the case 3 results we have;

for

P[ﬂ: \_\M (\—&P)G.D+Q.P(\-G-1lc)+

N =00
DTN & My =0
n-t N
+ AP z Tow G. Untmw Yo )N G-Unmm'b nad /v
M=o m(ﬂ\\ 1\ - M(M)*\‘ o]
DTMInG
- __N%”“_. MM+ V= 0
S
Reo Timy ( -Pmume » 7IDM/Ne _ - Crmumic+ i} Dimeny /,,() MM+ ‘lc' 10
MONC + )
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while for ER

P[E] = 1 - 2P
where P

ER
(1-2P)@ 5+ 1)

Q-

1
Gmws-1
Q

m(n) = - -i-ny—c- in

E
c-2§BR2(1)+1
0

In the next cahpter these rather involved equations are graphed and
analysed.
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CHAPTER 7.,

ANALYSIS OF RECEIVER PERFORMANCE

VS, SIGNAL TO NOISE AND TIME DELAY

After considerable mathematical analysis we are now in a position
to answer questions about the development of a receiver "philosophy"., A
comparison of P(E) for the different cases will reveal for which values
of ER/NO a particular receiver performs the best. We also have noticed
the fact that there are times when a decision region receiver simply
"throws in the towel"” and guesses. A closer look at the reasons for this
behavior and its effect on receiver performance will be made, Finally,
the results of our bit-by=bit analysis will be extended by an example,
to the more practical case of an error-correcting block code, The expres-
sions developed in the previous chapter were quite complicated involving
logarithms and non-integer values raised to non-integer powers, There~
fore, in order to evaluate them for many boints a computer program was
written, The program also contains a graphing routine which displays the
data both singly and five graphs to a page.

The different cases are studied in the next sections in the order
in which they were derived,

7.1 Case 1, The 3-Ary Receiver

Observing the graphs of Figures 17-20, we notice that the expres-
sion for P[E] decreases monotonically with increasing signal to noise
ratio (ER/NO). It is interesting to note that the complicated expres-
sion for P[L] for this case can be fairly accurately modeled over a

range of ER/N0 from .1 to 100 by a function of the form
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a + 9 : + The fact that the error probability decreases only in=-

1+ %% R(1)
versely with the signal to noise ratio even for large values of ER/NO,
is due primarily to the assumption of a scattering model in the channel.,
For a scattering model gives rise to a Rayleigh distribution for the re-
ceived signal amplitude; and this means that on any given transmission,
no matter how large the transmitted power, we may receive no signal,

Although it is not obvious from the graph,the case 1 receiver, for
the P = ,45 case, has begun to guess that noise is never sent once
ER/N0 falls below about 1.8, This is actually a logical step for the
receiver to take since saylng noise 18 never received will add .1 to
P[E], whereas using the poor (low ER/No) received data causes a mis-
take to be made between the weak signals and noise more often than a
tenth of the time, Actually, the receiver's 'guessing" for small values
of ER/No, in the graphs of case 1 is obscured by the fact that the
major portion of the recelver error occurs not from mistaking signal
and noise, but rather from confusing signals one and two. A much more
profound effect of receiver "guessing'" on P[E] will be seen later when
we eliminate the penalty for confusing s; and s;.

It is worth noting that setting P = ,50 leads to the simple case
of choosing between one of two equal energy, equally likely signals;
expression 6.13 for the case one P{E] then reduces to the standard

result! for this problem,

! Wozencraft & Jacobs, p. 533.
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7.2 Case 2, The Modified Binary Case

As mentioned earlier, this is a suboptimum decision rule involving
the choice of either signal or noise, Of primary interest will be to
verify that this case does indeed give an expression for P[E] which is
always greater than or equal to the optimum binary case (case 3).

The first interesting phenomena we notice is that for the P = ,5
case (Figure 21) the receiver has P[E] identically equal to zero for
all ER/No. This is due to the receiver using only the apriori know=-
ledge that a signal will be transmitted with probability one. Since

P =1/2 1is always greater than

E
2 f5'+ 1
Ng

ER
4 (E;) + 3

the receiver "guesses' signal regardless of the values of xi and since
a signal is always transmitted, it never makes a mistakel,

Moving on to a more interesting case we notice that the graph for
the P = ,45 case not only shows guessing for ER/No less than 1,9
but also is not monotone decreasing. It is obvious that this is not an
optimum receiver since one could do better by simply guessing signal at
every point where P[E] dis greater than .1, It is interesting to ob-
serve that the graphs of P[E] for cases 1 and 2 start to converge for

large signal to noise ratios (for example, see Figure 25, curves labeled

! This is actually an uninteresting case because if we knew beforehand
that a signal is broadcast with probability equal 1, we hardly need to

design a receiver to tell us whether or not a signal was transmitted.
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1 and 2), This would indicate that for small signal to noise ratios the
principal error is to mistake signals 1 and 2, but that as the signals
get stronger this mistake is made less often and the limiting factor is
the confusion of signals with noise. It is also worthwhile to notice
that for large ER/N0 the converging graphs actually lie almost on top
of each other (to within ,0000L for ER/yN, = 100). That is to say, a re-
celver operating in this range gains nothing by using the simpler deci-
sion rule, We will see that this result holds true also for the optimum
binary case of the next section,

7.3 Case 3, The Optimum Binary Case

An evaluation of the performance of the case 3 receiver is further
complicated over the previous cases by the need for linearizing the de-
cision rule. A computer subroutine was written which evaluated P[E]
while varying the number of segments from 1 to 50, A very surprising
result was obtained; for any number of segments greater than 2 the P[E]
was within one place in 105 of the 50-segment case! A closer examination
of the decision rule reveals that for large signal to noise ratios the
decision rule equation (6.,14A) approaches very closely a square (see
Figure 26). Since a two-segment approximation will fit a square as
perfectly as a fifty, and since the decision rule is practically a square,
it is then reasonable to expect for large ER/N0 that the decision rule
will be independent of the number of segments (above 2). For the small
signal to noise ratios we find that the main contribution to the value
of P[E] comes from integrating over area 2 of Figure 27, Since the
contributions from area 1 are small, the exact shape of it, be it curved

(Figure 27A), quadralateral (Figure 27B), or otherwise is relatively
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unimportant. A combination of these two factors then helps to explain
the surprésing results of the computer program,

This result raises an interesting question. Why, i1f case 2 is a
square, and the optimum case can be closely approximated by a square, is
case 2 (as we have seen) not optimum? The answer to this question is that
the case 2 decision rule has an xi-intercept at 1/Q while the case 3
rule has the intercept at 1/Q - 1. It would then appear that the ériti-
cal factor in the design of an optimum binary receiver is not the exact
shape of the decision curve but rather the intercept on the xi axes,

Case 3 with P = 1/3 (see Figure 30) illustrates a clear example of
receiver guessing. The value of the probability of error expression
starts to rise for decreasing signal to noise ratio., Finally, when
P[E] based upon the input data is about to exceed the error probability
for guessing, the receiver does guess and the P[E] curve levels off.

From Chapter 6
ER
a - 2p)(2N—°- R(t) + 1)

Ol

P

and, as ER/NO becomes large, l/Q - l::qu. Thus, for these signal

to noise ratios the case 1 and 2 x%-—intercepts are about the same,

From our previous discussion it was shown that equal intercepts give rise
to approximately equal expressions for P{E]. Checking Figure 25 (curves
2, 3) we see that for ER/yN, greater than 4.7 the ciérves differ by a
vanishingly small amount. This graph also points out the interesting re-
sult that for large signal to noise ratios, cases 1, 2, and 3 all behave
approximately the same, and therefore we should use the case 1 recetfver

which extracts the most information.
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The last point to observe from Figure 25 is that case 3 not only
begins to guess earlier than case 2 (1/Q - 1 as compared to 1/Q), but
also decreases more rapidly for small signal to noise ratios.

Finally, the 2-segment case 3 expression was compared with case 2,
for all values of ER/N0 from .01 to 100, for values of P from
.01 to .50, and for all values of T between 0 and 75 usec. At every
point the case 3 P[E] was less than or equal to the case 2 P[E], which

indeed it should be if the previous theories were consistent,

7.4 Some Further Comments on Decision Region Receiver
P[E] as a Function of ER/No

As mentioned previously the receiver guesses when it finds that the
input data is of such poor quality that better results can be obtained
by simply choosing signal, It should be noted that when the receiver
guesses, it always chooses signal - never noise, This implies that a
necessary condition for optimum receiver guessing is for the sum of the
signal probabilities to be greater than 1/2. Other conditions for
guessing are placed upon the a priori probabilities by the receiver

structure, For example, case 3 requires

&=

1
SP<F

while case 2 requires

=

1
- < P <
3.... -—
Finally, it appears that, except for those times when the receiver
is guessing, an optimum receiver has a P[E] function which is monotone

decreasing with signal to noise ratiol,

! 1t should be noted that this is not always true for non-optimum re-
ceivers., See case 2 graphs for an example.
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This concludes the examination of the effects of varying signal to
noise ratios on receiver performance. In the next section we shall study
the results of having only a finite number of correlators available for
use in the receiver,

7.5 P[E]l] Vs. Time Delay Error

From Chapter 4 we remember that the estimation rule is to wait un-
til x% is a maximum and then choose this instant as the arrival time
of the signals, i.e,, set 1, the relative signal delay equal to zero.
However, since we have only a finite number of correlators we are likely
to choose a maximum for which T # 0. The effect of this nonzero =,
is shown in the following Figures, 32 through 35, For a low signal to
noise ratio (.1) it actually makes little difference what <t 1is - the
performance of the receiver is about equally bad for all values of time
delay. For signal to noise ratio of 1 the error increases linearly
with 1t reaching a maximum at the baud length of the Barker code. As
the signal to noise ratio further increases the curves for P[E] start
becoming more concave., For ER/N0 equal to 100 we can even miss by 2/5
of a band length and still have error probabilities of less than 10-3,1
It also may be noticed that for any 1, P[E] for case 3 is always

less than P[E] for case 2, as expected.

1
By using coding, error probabilities of less than 10~* can be ob-

tained even after missing by 3/5 a band length, (See Figure 35,

curve 5),
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7.6 A Simple Coding Scheme

By using a coding scheme! it is possible to decrease the message
errors over the bit by bit cases just studied., For example, curve 5 on
the previous figures represents a coding scheme having eight code words
of length 12 bits and minimum hamming distance 7., A 7-distance code
allows for correction of three or less errors, The individual bit by
bit errors used in the calculations for case 5 are giveg by case 4
(curve 4 on the graphs), an equal energy, equal probability optimum re-
ceiver. Note that the block probability of error is tiny in comparison
to the bit by bit case until the per bit errors become moderate. Once
this happens P[E] for the block signaling case rises extremely rapidly
(exponentially) to a much greater value than the bit by bit error. If

P [error/bit] = Py then the block error probability can be expressed as

12
PlEpg] = 1 ({f) Pé 1 - pp)t2-t
i=y

This coding can supply an exponential decrease in receiver probabil-
ity of error. However, this is at the expense of reduced transmission
rates since we must transmit 12 bits to represent the same messages we

could represent with 3 bits were it not for error correction.

1 Abramson, Information Theory and Coding
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CHAPTER 8,

SUMMARY AND FINAL REMARKS

In the preceding chapters we have looked in detail at the problem
of communicating through a noisy, scattering channel with time delay.

It was observed that this channel rotated the "transmitted vector" in
signal space, scaled it in amplitude and added to it a noise vector.
Several decision rules, using the received vector as a basis, were de~-
veloped. The two most important cases were the 3-ary decision rule
(case 1) for choosing between message 1, message 2, or noise, and the
optimum binary rule (case 3) for choosing between any message and noise.
Which case should be used for the Sunblazer receiver was found to be
determined primarily by the signal to noise ratio ~ for large ER/N0
use case 1, while for small ER/No use case 3.

It was also noticed that both the case 1 and case 8 receilvers
resorted to "guessing' under certain conditions of low signal to noise
ratio., The optimum binary case was also examined in more detail and
the critical factors for optimum reception were explored.

Finally, a simple coding scheme was used to illustrate the advan-
tages which coding can realize over simple bit by bit signalling systems.

.1 Future Ideas and Extensions

There are numerous extensions which can be made to this problem.
These include the effect of dispersion on the signal, non-orthogonal
signal sets, and different channel models. A particularly interesting
channel model would be the Riciam, since it is probably a more realistic
model of the space enviromnment through which Sunblazer must transmit,

Further work might also be done on receiver 'guessing" and the effect of
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the shape of the decision region on the expressions for P[E]. Finally,
it might be interesting to examine other coding schemes besides the for-
ward and backward Barker codes, particularly those with non-zero off

diagonal terms in R(T).
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